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47071 Valladolid, Spain

Received 4 April 2006, in final form 10 July 2006
Published 29 August 2006
Online at stacks.iop.org/JPhysA/39/11441

Abstract
The travelling wave solutions of the two-dimensional Korteweg–de Vries–
Burgers and Kadomtsev–Petviashvili equations are studied from two
complementary points of view. The first one is an adaptation of the factorization
technique that provides particular as well as general solutions. The second
one applies the Painlevé analysis to both equations, throwing light on some
aspects of the first method and giving an explanation to some restriction on
the coefficients, as well as the relation between factorizations and integrals of
motion.

PACS numbers: 05.45.Yv, 52.35.Mw, 52.35.Sb, 02.30.Jr

1. Introduction

The two-dimensional Korteweg–de Vries–Burgers (2D KdVB) equation is an extension of
the KdVB equation, which is well known as a nonlinear model in the theory of plasmas and
hydrodynamics. However, the 2D KdVB equation is not integrable, as it was the case of
the KdVB equation that possesses conditionally the Painlevé property [1]. Therefore, it is
important to develop specific methods to find exact solutions. Let us mention here some of
them: the application of a special solution of square Hopf–Cole type to an ordinary differential
equation [2], a computer algebra system (by using Mathematica) [3, 4], the tanh method
[5, 6] and the first integral method [7]. On the other hand, the Kadomtsev–Petviashvili (KP)
equation [8] is a natural two-dimensional generalization of the Korteweg–de Vries (KdV)
equation. From the mathematical point of view this integrable equation has a rich structure,
which has been considered in some textbooks [9, 10].
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In this work we will follow two approaches to obtain travelling wave solutions of both,
2D KdVB and KP equations. The first method consists of an application of the factorization
technique well known in quantum mechanics. The second method starts by examining the
Painlevé property of the reduced ordinary differential equation (ODE) and then changing it
into a standard form by means of scale transformations. Of course, the final expressions for
the travelling waves coincide, but the latter method supplies additional information: it gives
an interpretation of factorizations in terms of a kind of invariants related to Bohlin’s integral,
and also explains some values of the parameters used in such factorizations. This second
approach also allows us to find the Hamiltonian and Lagrangian functions associated with
these nonlinear equations.

The paper is organized as follows. In section 2, we will briefly introduce the factorization
technique adapted to nonlinear equations and show how to apply it to find the travelling wave
solutions of the two-dimensional KdVB equation. In section 3, we analyse the KP equation
by the same technique, obtaining a class of travelling wave solutions involving the Weierstrass
function. Section 4 contains an analysis of the Painlevé property for the reduced 2D-KdVB
ODE and the solutions through scale transformations. The specific values of the parameters,
together with the factorization of a θ -dependent first integral, connect these results with those
of section 2. In section 5 we consider the KP equation from this second point of view
and establish the relation between these results and the factorizations of section 3. Finally,
section 6 will end the paper with some conclusions and remarks.

2. Travelling waves of the two-dimensional KdVB equation

2.1. Travelling waves

The two-dimensional Korteweg–de Vries–Burgers equation has the following form [7]:

(ut + αuux + βuxx + suxxx)x + γ uyy = 0, (2.1)

where α, β, s and γ are real constants which take into account different effects, such as
nonlinearity, viscosity, turbulence, dispersion or dissipation. We remark that equation (2.1) is
closely related to the Korteweg–de Vries–Burgers equation [1, 11]:

ut + αuux + βuxx + suxxx = 0. (2.2)

Let us assume that equation (2.1) has an exact solution in the form of a travelling wave

u(x, y, t) = φ(ξ), ξ = hx + ly − ωt, (2.3)

where h, l, ω are real constants to be determined. If we substitute (2.3) in equation (2.1), we
get

h4sφξξξξ + h3βφξξξ + h2α(φφξ )ξ + (γ l2 − ωh)φξξ = 0, (2.4)

and then if we integrate equation (2.4) two times with respect to ξ , we have

h4sφξξ + h3βφξ +
h2α

2
φ2 + (γ l2 − ωh)φ = R1ξ + R2, (2.5)

where R1 and R2 are two integration constants. The linear transformation of the dependent
and independent variables

ξ = −hsθ φ(ξ) = − 2

αs
W(θ) (2.6)

transforms (2.5) into

d2W

dθ2
− β

dW

dθ
− W 2 + kW = d1θ + d2, (2.7)
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where

k = (γ l2 − ωh)s

h2
, d1 = αR1s

3

2h
, d2 = −αR2s

2

2h2
. (2.8)

We will assume in this section that β �= 0. The case β = 0 corresponds to the KP equation
and it will be separately studied in section 3.

2.2. Factorization of nonlinear equations

To deal with equation (2.9) we will introduce in this section a factorization technique applied
to a class of nonlinear equations. So, let us consider the nonlinear second-order ODE

d2U

dθ2
− β

dU

dθ
+ F(U) = 0, (2.9)

where F(U) is a polynomial function. This equation can be factorized as[
d

dθ
− f2(U, θ)

] [
d

dθ
− f1(U, θ)

]
U(θ) = 0, (2.10)

with f1 and f2 being two unknown functions that may depend explicitly on U and θ . In order
to find f1 and f2, we expand (2.10):

d2U

dθ2
−

(
f1 + f2 +

∂f1

∂U
U

)
dU

dθ
+ f1f2U − U

∂f1

∂θ
= 0, (2.11)

and then comparing with (2.9) we obtain the following consistency conditions:

f1f2 = F

U
+

∂f1

∂θ
(2.12)

f2 +
∂(Uf1)

∂U
= β. (2.13)

If we find a solution for this factorization problem, it will allow us to write a compatible
first-order ODE[

d

dθ
− f1(U, θ)

]
U(θ) = 0 (2.14)

that provides a (particular) solution to the nonlinear equation (2.9) (see [11]).

2.3. Factorization of the KdVB travelling wave equation

If we want to use the factorization technique described above in order to solve (2.7), the first
integration constant R1 must be taken equal to zero. Also, it can be shown that nontrivial
factorizations are obtained only when d2 = 0, which is a very restrictive condition. To
circumvent this constraint, we propose a simple displacement on the unknown function

W(θ) = U(θ) + δ, (2.15)

where δ is a constant solution of (2.7) so that

d2 = kδ − δ2. (2.16)

We will restrict to values of d2 such that k2 > 4d2 in order to have real solutions of (2.16).
In particular we select the solution of (2.16) such that 2δ = k −

√
k2 − 4d2 and therefore

k − 2δ > 0.
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According to this change, (2.7) becomes

d2U

dθ2
− β

dU

dθ
− U 2 + (k − 2δ)U = 0. (2.17)

If we compare equations (2.17) and (2.11), condition (2.12) adopts the form

f1f2 = k − 2δ − U +
∂f1

∂θ
. (2.18)

2.3.1. Particular case. We get particular solutions of (2.17) in the case in which f1 and f2

do not depend explicitly on θ . By using the ansatz

f1 = AUp + B (2.19)

we get from (2.18)

f2 = β − B − A(p + 1)Up, p = 1

2
, A2 = 2

3
, B = 2β

5
(2.20)

together with a constraint between the parameters k, δ and β

k − 2δ = 6β2

25
⇒ d2 = k2

4
− 9β4

625
. (2.21)

The particular solutions of (2.17) are obtained by solving (2.14). Indeed, we get the following
two ODEs:

dU±

dθ
= ±

√
2

3
U 3/2 +

2β

5
U, (2.22)

whose general solutions are

U±(θ) = 6β2

25

1(
1 ± e− β(θ−θ0)

5
)2

, (2.23)

where θ0 is an integration constant. These solutions can be written in the following form:

U+(θ) = 3β2

50

(
1 + tanh

[
β(θ − θ0)

10

])2

(2.24)

U−(θ) = 3β2

50

(
1 + coth

[
β(θ − θ0)

10

])2

. (2.25)

Now, according to (2.3), (2.6) and (2.15) we can write the solutions of the 2D KdVB equation
as

u(x, y, t) = − 2

αs
(U(θ) + δ). (2.26)

Substituting δ and U(θ) into (2.26), we obtain the particular travelling solitary wave solutions:

u(x, y, t) = −12β2

25αs

1(
1 + z0 e

β

5sh
(hx+ly−ωt)

)2 +
ωh − γ l2

αh2
+

6β2

25αs
, (2.27)

where z0 = ±e
β

5 θ0 is an arbitrary constant. This solution coincides with the result of [7].
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2.3.2. General case. We can also find the general solution to the factorization of
equation (2.17) with f1 and f2 depending only on U. To do this, first let us substitute (2.13)
into equation (2.18),

Uf1
df1

dU
= βf1 − f 2

1 + U − (k − 2δ), (2.28)

and then let us make the following replacement:

g(U) = f1(U)U, (2.29)

then (2.28) adopts the form of an Abel equation of the second kind:

g
dg

dU
− βg = U 2 − (k − 2δ)U. (2.30)

Provided that restriction (2.21) between the parameters is satisfied, the solution of (2.30) is
given in the parametric form [13] as

U(τ) = 6β2

25
τ 2℘(τ), g(τ ) = 6β3

125
τ 2E4(τ ), (2.31)

where

E4(τ ) = τ
√

4℘3(τ ) − 1 + 2℘(τ), (2.32)

and ℘(τ) ≡ ℘(τ + C2, 0, 1) is a particular case of the elliptic Weierstrass function including
an integration constant C2.

If we derive U(τ), given in (2.31), with respect to τ , replacing ℘ ′(τ ) =
√

4℘(τ)3 − 1
and g(τ), we get

βτ

5

dU

dτ
− f1(U)U = 0, (2.33)

then, comparing with equation (2.16), we obtain τ as a function of θ , i.e., τ = eβ(θ+θ0)/5, where
θ0 is an integration constant. If we use this value of τ in (2.31) we get

U(θ) = 6β2

25
e2β(θ+θ0)/5℘(eβ(θ+θ0)/5 + C2, 0, 1). (2.34)

Now, we can write the exact solution of equation (2.1) using (2.26) and substituting δ and θ ,

u(x, y, t) = −12β2

25αs
e

−2β

5sh
ξ e

2θ0
5 ℘

(
e

−β

5sh
ξ e

θ0
5 + C2, 0, 1

)
+

ωh − γ l2

αh2
+

6β2

25αs
, (2.35)

with ξ given in (2.3). This solution can be written in terms of Jacobian elliptic functions as

u(x, y, t) = −
√

3β2

25αs
e− 2β

5hs
ξ a2

0

(
1 +

√
3

1 + cn
[
a0

(
e− β

5hs
ξ + z0

)
,m

]
1 − cn

[
a0

(
e− β

5hs
ξ + z0

)
,m

])
+

ωh − γ l2

αh2
+

6β2

25αs
,

(2.36)

where m = 1/2 − √
3/4, a0 = 2 eβθ0/5 and z0 = C2 e−βθ0/5. Solution (2.35) also coincides

with the result of [7], obtained in another way.
Let us remark that in the limit a0 → 0, the elliptic function cn

[
a0

(
e− β

5hs
ξ + z0

)
,m

]
can

be expanded in Taylor series as 1 − 1
2a2

0

(
e− β

5hs
ξ + z0

)2
+ · · ·. Therefore, in the limit a0 → 0,

(2.36) reduces to (2.27). If we take γ = 0 in solutions (2.27) and (2.35), we get the travelling
waves of the KdVB equation (2.2) given in [11].

Note that from equations (2.31)–(2.33) we can write the expression for f1(U):

f1(U) = 1

U

[
2

3

(
U 3 − C3

0 e
6β

5 θ(U)
)]1/2

+
2β

5
, (2.37)
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where C0 is an arbitrary constant and θ is an implicit function of U given in (2.31). The
function f2(U) can also be found by (2.13) but taking into account the dependence of θ on U

f2(U) = − U 2 − 2β

5 C3
0 e

6β

5 θ(U) dθ
dU[

2
3

(
U 3 − C3

0 e
6β

5 θ(U)
)]1/2 +

3β

5
,

dθ

dU
= 1

Uf1(U)
. (2.38)

Then after a straightforward calculation the consistency equation (2.12) with ∂f1

∂θ
= 0 is

satisfied by f1(U) and f2(U) having in mind restriction (2.21).
Due to the parametric relation (2.31) between U and θ , expression (2.37) of f1(U) in

terms of U cannot be displayed explicitly. Hence, we can define a new f1(U, θ) as an explicit
expression on both variables U and θ in the form

f1(U, θ) = 1

U

[
2

3

(
U 3 − C3

0 e
6β

5 θ
)]1/2

+
2β

5
(2.39)

and therefore

f2(U, θ) = − U 2[
2
3

(
U 3 − C3

0 e
6β

5 θ
)]1/2 +

3β

5
. (2.40)

It is worth to remark that these expressions constitute a generalization of the ansatz (2.19)–
(2.20) used to get the particular solutions (2.27). In this case we have to use the consistency
conditions for the factorization given in (2.12)–(2.13) with ∂f1

∂θ
�= 0. Then, we can check

that indeed these conditions are satisfied by f1(U, θ), f2(U, θ) given in (2.39) and (2.40).
Therefore, equation (2.14) takes the form

dU

dθ
=

[
2

3

(
U 3 − C3

0 e
6β

5 θ
)]1/2

+
2β

5
U. (2.41)

Of course, (2.41) has the same solution as given above in (2.34).

3. Travelling waves of the two-dimensional KP equation

By taking β = 0 in (2.1), we obtain the two-dimensional Kadomtsev–Petviashvili (KP)
equation:

(ut + αuux + suxxx)x + γ uyy = 0, (3.1)

where α, s and γ are real constants different from zero. Sometimes this equation is introduced
in different standard forms by rescaling the coordinates. For instance in [10, 14], it is written
as

(−4ut + 6uux + uxxx)x + 3σ 2uyy = 0. (3.2)

When σ 2 = −1 it is referred to as KPI and if σ 2 = 1, as KPII. These two types have different
properties from both physical and mathematical points of view. Here we will consider the KP
equation with general coefficients.

Suppose that equation (3.1) has travelling wave solution. Operating as in section 2, we
make the changes,

u(x, y, t) = − 2

αs
(U(θ) + δ), θ = −hx + ly − ωt

hs
(3.3)

that transform (3.1) into the equation

d2U

dθ2
− U 2 + (k − 2δ)U = 0, (3.4)
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where k and δ are defined in (2.8) and (2.16), but in this case there will be no restrictions on
these parameters. To apply the factorization technique we will assume that f1 and f2 depend
only on U. Thus, comparing (3.4) with (2.11) we have

f1f2 = k − 2δ − U (3.5)

f2 +
∂(Uf1)

∂U
= 0. (3.6)

Replacing (3.6) in equation (3.5) we get a nonlinear ODE for f1,

f1
df1

dU
= 1 − (k − 2δ)U−1 − f 2

1 U−1. (3.7)

The general solutions of this equation are of two types:

f1 = ±
√

2

3
U − (k − 2δ) + cU−2, (3.8)

where c is an integration constant. For this case, equation (2.14) becomes

dU√
2
3U 3 − (k − 2δ)U 2 + c

= ±dθ. (3.9)

The solution of (3.9) is

U(θ) = 6℘((θ + θ1), g2, g3) +
(k − 2δ)

2
, (3.10)

where θ1 is an integration constant, and

g2 = (k − 2δ)2

12
, g3 = − (k − 2δ)3

216
− c

36
. (3.11)

Therefore, we can write the general travelling wave solution of the KP equation using (3.3) as

u(x, y, t) = − 12

αs
℘

(
(hx + ly − ωt) + θ1

αs
, g2, g3

)
+

ωh − l2γ

αh2
. (3.12)

The general solution (3.10) can also be written in terms of Jacobi elliptic functions as follows:

U(θ) = k − 2δ

2
− 2a2

0(m
2 + 1) + 6a2

0m
2sn2 [a0(θ − θ0),m] , (3.13)

where θ0 is an integration constant and a0,m are positive and satisfy

k − 2δ = 4a2
0

√
m4 − m2 + 1 (3.14)

c = (k − 2δ)3

6
− 16a6

0

3
(m2 + 1)(2m2 − 1)(m2 − 2). (3.15)

3.1. Hyperbolic limits

If we choose c = (k − 2δ)3/3 in (3.11) we have g2 = 12µ2 and g3 = −8µ3, with
µ = (k − 2δ)/12, we get the particular solution of the KP equation:

u(x, y, t) = − 3r

αh2
cosech2

(
r1/2

2s1/2h2
(hx + ly − ωt + θ1)

)
+

ωh − l2γ − r

αh2
, (3.16)

where r =
√

2αR2h2 + (l2γ − ωh)2. By setting θ1 = π
2 i + θ0, solution (3.16) becomes

u(x, y, t) = 3r

αh2
sech2

(
r1/2

2s1/2h2
(hx + ly − ωt + θ0)

)
+

ωh − l2γ − r

αh2
. (3.17)
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If we take r = h4s and α = 1, these solutions coincide with the result of [3], provided that
the dispersion relation ωh − l2γ − h4s = 0 is satisfied. These two particular solutions could
be obtained from the hyperbolic limits of the Jacobi expression (3.13) by taking the value of
the elliptic parameter m = 1.

When we choose γ = 0 in equation (3.1), it becomes the KdV equation. Hence, the
travelling wave solutions of the KdV equation are also given by (3.12), and the particular
solutions by (3.16), (3.17) with the replacement γ = 0.

4. The Painlevé analysis

As we have seen in the previous sections, the factorization technique is only applicable for
some values of the coefficients. In order to have a better understanding of the links existing
between the coefficients, let us apply the Painlevé test [15] to equation (2.17). This test
requires that all the solutions of (2.17) are single valued in the neighbourhood of a movable
singularity depending on the initial conditions. From a technical point of view, it means that
the solutions must be expressed locally as a Laurent series of the form

U(θ) =
∞∑

j=0

aj (θ − θ0)
j−2 a0 �= 0 (4.1)

in a neighbourhood of θ0. The substitution of (4.1) in (2.17) provides the recursion relation

[(j − 2)(j − 3) − 2a0] aj = (k − 2δ)aj−2 + β(j − 3)aj−1

+
j−1∑
m=1

amaj−m, j = 0, 1, . . . , (4.2)

where a−1 = a−2 = 0. For j = 0, equation (4.2) provides the leading term a0 = 6.
Equation (4.2) allows us to obtain every aj in terms of am, with m ∈ {0, 1, . . . , j − 1}, except
when its coefficient [(j − 2)(j − 3) − 2a0] vanishes, that is for j = 6. Therefore a6 remains
arbitrary and it is called a resonance of the equation. For j = 6, (4.2) is the resonance condition
that must be satisfied by a1, . . . , a5 in order to pass the Painlevé test. Taking j = 1, . . . , 5 in
(4.2), we have

a1 = 6β

5
a2 = k

2
− δ − β2

50
a3 = β3

250

a4 = k2

40
− kδ

10
+

δ2

10
− β4

5000

a5 = −βk2

600
+

11βkδ

150
− 11βδ2

150
+

79β5

75 000
.

(4.3)

For j = 6, (4.2) provides the following resonance condition:

−3βa5 − 2a1a5 − 2a2a4 − a2
3 + (k − 2δ)a4 = 0. (4.4)

By substituting (4.3) in the previous equation (4.4), we have

β2
[
β4 − (

25
6 (k − 2δ)

)2] = 0. (4.5)

Therefore, (2.17) passes the Painlevé test in two cases:

• (a) β2 = 25(k−2δ)/6 that corresponds to the case in which the KdVB equation factorizes
according to (2.21). This means that reduction (2.17) of the 2D KdVB equation is
integrable only under this restriction.

• (b) β = 0 that corresponds to the KP equation that passes the Painlevé test for all the
values of the coefficients [16].
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5. Scale transformations

Now let us study (2.17) from a different point of view. In the previous section we have
established condition (4.5) to be satisfied in order to pass the Painlevé test. Therefore, under
this assumption equation (2.17) should be written in a canonical form as one of the 50 integrable
second-order ODEs classified by Painlevé and co-workers [17].

5.1. KdVB case

For β �= 0, the change [17]

U(θ) = λ2(θ)Y (z), dz = λ(θ) dθ, (5.1)

where

λ(θ) = β

5
e

β

5 θ 	⇒ z = e
β

5 θ (5.2)

allows us to write (2.17) in the canonical form

d2Y

dz2
− Y 2 = 0, (5.3)

if and only if condition (2.21) is satisfied.

5.1.1. θ -dependent first integral. Equation (5.3) can be trivially integrated as

E = 1

2

(
dY

dz

)2

− Y 3

3
, (5.4)

where E is a constant that can be written in the initial variables as the following ‘θ -dependent
first integral’ for (2.17):

E =
(

5

β

)6

e− 6β

5 θ

(
1

2

(
dU

dθ
− 2

5
βU

)2

− U 3

3

)
. (5.5)

5.1.2. Factorization. Equation (5.4) factorizes trivially as the product(
dY

dz
−

√
2

3
Y 3 + 2E

)(
dY

dz
+

√
2

3
Y 3 + 2E

)
= 0, (5.6)

therefore

dY

dz
±

√
2

3
Y 3 + 2E = 0 (5.7)

solves (5.3). If we write (5.7) in terms of the original variables, we have

dU

dθ
− 2β

5
U ±

√
2

3
U 3 + 2E

(
β

5

)6

e
6β

5 θ = 0 (5.8)

that coincides with factorization (2.41) of section 2 by identifying 3E = −(25C0/β
2)3 and

the particular case (2.22) when E = 0.



11450 P G Estévez et al

5.1.3. Bohlin’s integral. As it is well known [18], for the damped harmonic oscillator, it is
possible to define two independent integrals of motion related to Bohlin’s integral such that
the ‘time-dependent energy’ of the damped harmonic oscillator factorizes as the product of
these invariants. In the present case, the form of (5.4) suggests the following factorization:

E = 1

2
D1D2 D1 =

(
dY

dz
−

√
2

3
Y 3

)
eM D2 =

(
dY

dz
+

√
2

3
Y 3

)
e−M. (5.9)

It is easy to check that dIj

dz
= 0, j = 1, 2 if M is defined as

M =
∫ √

3

2
Y dz. (5.10)

If we write the invariants in the original variables, we have

D1 =
(

5

β

)3

e− 3β

5 θ

(
dU

dθ
− 2β

5
U −

√
2

3
U 3

)
e
∫ √

3U/2 dθ

D2 =
(

5

β

)3

e− 3β

5 θ

(
dU

dθ
− 2β

5
U +

√
2

3
U 3

)
e−∫ √

3U/2 dθ .

(5.11)

Therefore, D1 and D2 are constant of motion for (2.17) if relation (2.21) holds.

5.1.4. Hamiltonian Formalism. We can obtain a Lagrangian and a Hamiltonian for (2.17),
starting from the canonical equation (5.3) that obviously can be derived from the Lagrangian

L(Y, Yz) = 1
2Y 2

z + 1
3Y 3. (5.12)

The momentum is

P = ∂L

∂Yz

= Yz, (5.13)

and therefore the Hamiltonian H = YzP − L is

H(Y, P ) = 1
2P 2 − 1

3Y 3. (5.14)

In order to derive a Lagrangian L̃(U,Uθ) for (2.17), it is necessary to consider that the action
principle should be invariant under the transformation (5.1). Therefore,

L(Y, Yz) dz = L̃(U,Uθ) dθ ⇒ L̃(U,Uθ) = λ(θ)L(Y, Yz). (5.15)

Combining (5.1) and (5.12) we have

L̃(U,Uθ) = 1

λ(θ)5

[
1

2

(
Uθ − 2β

5
U

)2

+
U 3

3

]
(5.16)

and

P̃ = ∂L̃

∂Uθ

= 1

λ(θ)5

(
Uθ − 2β

5
U

)
. (5.17)

Then, we have for (2.17) the non-autonomous Hamiltonian H̃ = UθP̃ − L̃(U,Uθ),

H̃ = 1

2
λ(θ)5P̃ 2 +

2β

5
P̃U − 1

3λ(θ)5
U 3, (5.18)

that obviously is not a constant of motion. Nevertheless, the θ -dependent constant of motion
E given in (5.5) can be expressed in the phase variables U, P̃ as

E = 1

2
λ(θ)4P̃ 2 − 1

3

U 3

λ(θ)6
. (5.19)

It is easy to check that (5.19) satisfies
dE

dθ
= ∂E

∂θ
+ {E, H̃ } = 0. (5.20)
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5.2. KP case

Equation (3.4) is directly written in the canonical form and it can be trivially integrated as

1

2

(
dU

dθ

)2

− U 3

3
+

k − 2δ

2
U 2 = E, (5.21)

where E is a constant of integration.

5.2.1. Factorization. From (5.21), we have(
dU

dθ
−

√
2

3
U 3 − (k − 2δ)U 2 + 2E

) (
dU

dθ
+

√
2

3
U 3 − (k − 2δ)U 2 + 2E

)
= 0 (5.22)

that coincides with factorization (3.9) if c = 2E.

5.2.2. Integrals of motion. A different form of (5.21) is(
dU

dθ
+

√
2

3
U 3 − (k − 2δ)U 2

)(
dU

dθ
−

√
2

3
U 3 − (k − 2δ)U 2

)
= 2E (5.23)

that suggests [18] that E can be written as the product of two first integrals defined as

D1 =
(

dU

dθ
−

√
2

3
U 3 − (k − 2δ)U 2

)
eN (5.24)

D2 =
(

dU

dθ
+

√
2

3
U 3 − (k − 2δ)U 2

)
e−N . (5.25)

It is easy to prove that D1,D2 are constants of motion if

N =
∫

(U 2 − (k − 2δ)U√
2
3U 3 − (k − 2δ)U 2

dθ. (5.26)

Here, the Lagrangian and the Hamiltonian functions can also be straightforwardly obtained,
as it was done in the KdVB case.

6. Conclusions

In this paper we have investigated the travelling wave solutions of the two-dimensional KdVB
and KP equations. We started by applying a factorization technique, already used in other
nonlinear equations, to get particular and general solutions in terms of elliptic functions. In
a particular case (section 2.3.2), we have adapted the method so that the functions f1 and f2

entering the factorization may depend explicitly on both variables U and θ . The factorization
can be realized only by imposing some restrictions on the coefficients of the KdVB equation.
These constrains are shown to coincide with those obtained by means of the Painlevé analysis
of this equation. Afterwards, by using scale transformations we obtained a kind of θ -dependent
first integrals that are directly related to the factorizations. From these integrals we formulated
a kind of Bohling invariants. Using this framework we also derived the Lagrangians and
Hamiltonians for the nonlinear equations considered in this paper. Finally, let us stress that,
compared with the methods of other references, our approach is quite systematic and gives a
comprehensive picture for this kind of travelling solutions.
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