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One-dimensional disordered wires with Poschl-Teller potentials

Alberto Rodriguez* and Jose M. Cerverd
Fisica Teorica, Departamento de Fisica Fundamental, Universidad de Salamanca, 37008 Salamanca, Spain
(Received 11 April 2006; revised manuscript received 4 July 2006; published 5 September 2006)

We study the electronic properties of a one-dimensional disordered chain made up of Poschl-Teller poten-
tials. The features of the whole spectrum of the random chain in the thermodynamic limit are analyzed in detail
by making use of the functional equation formalism. The disordered system exhibits a fractal distribution of
states within certain energy intervals and two types of resonances exist for the uncorrelated case. These
extended states are characterized by different values of their critical exponents and different behaviors near the
critical energies when the system is finite, but their existence can be defined by a single common condition.
The chain is also considered including a natural model of short-range correlated disorder. The results show that
the effects of the correlations considered are independent of the potential model.
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I. INTRODUCTION

The pioneering work of Anderson' showed how the elec-
tronic properties of a solid can be dramatically affected by
the absence of periodicity in the system which gives rise to
the spatial localization of the electronic states. Since then the
study of disordered systems has been an active area of re-
search and nowadays the physics of disorder constitute a
relevant interdisciplinary part of physics whose leading ex-
ponent can probably be found in the field of condensed mat-
ter. Electronic localization due to disorder is a key element to
understanding different physical phenomena such as the
quantum Hall effect or the suppression of conductivity in
amorphous matter. The effects of disorder are of primary
importance in low-dimensional systems: two-dimensional
electron gases, one-dimensional quantum wires, etc., whose
electronic properties can be seriously affected by the pres-
ence of disorder which may indeed yield a very particular
phenomenology. During the last few years much has been
learnt about the electronic properties of one-dimensional dis-
ordered systems. For example, the existence of correlations
in the disorder can lead to delocalization and thus improving
the transport properties of disordered structures. This has
been proved theoretically for short-range correlated disorder
which induces the appearance of isolated extended states,” '
as well as for long-range correlations that lead to the emer-
gence of a phase of apparently extended states and a quali-
tative metal-insulator transition.'">2! These predictions were
experimentally confirmed in different systems: semiconduc-
tor superlattices’ and microwave guides,”>?* respectively.
The significance of the appearance of phases of extended
states in the spectrum of a disordered system is also in-
creased by the theoretical description of interesting dynami-
cal phenomena such as Bloch oscillations.?>?0 It has also
been shown that delocalization in one-dimensional (1D)
structures with random disorder can take place due to the
existence of long-range interactions.?’->° On the other hand,
universality of the distributions of macroscopic transport-
related quantities characterizing disordered systems has been
studied by scaling theory (see Ref. 30), which is still evolv-
ing nowadays: the conditions for the validity of single pa-
rameter scaling (SPS) have been recently reformulated’!-*?
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and it has been found that different scaling regimes appear
when disorder is correlated.?

The interest for disorder is also currently registering a
noticeable increase in the field of ultracold atomic lattice
gases. Optical lattices in one or two dimensions can be used
to study the dynamics of Bose-Einstein condensates in the
presence of disordered potentials,**3 the appearance of
Anderson-glass phases in bosonic gases,’® or the interplay
between disorder and interactions.’’” Moreover ultracold
atomic gases in optical lattices appear as very favorable sys-
tems for the realization of low-dimensional disordered sys-
tems and the experimental observation of Anderson localiza-
tion of matter waves.?

In spite of the advance in the understanding of the prop-
erties of one-dimensional disordered systems there are sev-
eral interesting questions which require a deeper study, such
as the peculiar features of the distribution of states when
disorder appears, whether there exists or not a universal con-
dition for the emergence of extended states in the spectrum,
the effects of different models of correlated disorder, or even
if it is possible to make a general analytical description of the
thermodynamic limit of disordered 1D systems. In order to
deepen in some of these problems we study here a one-
dimensional random system with a different potential, the
Poschl-Teller potential, which has not been treated in the
literature with such a purpose. Some of the characteristic
properties of this disordered system have already been re-
ported by the authors.? This work is intended to provide a
thorough description of the model including a detailed dis-
cussion on the conclusions that can be inferred from the re-
sults obtained. The paper is organized as follows. In Sec. II
the quantum properties of the individual potential are de-
scribed and in Sec. III we briefly explain the procedure to
join several potential units. Section IV is devoted to the
study of the properties of uncorrelated disordered chains in-
cluding features of DOS, appearance of extended states,
study of the negative spectrum of energies, etc. The effects
of short-range correlations upon this model of potential are
described in Sec. V for both infinite and finite chains. Section
VI gathers a final discussion on the results and some hypoth-
esis concerning the properties of 1D disordered systems.
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FIG. 1. Poschl-Teller potential defined in Eq. (1).

II. THE POTENTIAL

Let us consider the general Poschl-Teller potential, shown
in Fig. 1, and given by
h2a? Vv
Vix) = 2m cosh?(ax)’ )
It resembles the form of an atomic well or barrier depending
on the sign of V, a dimensionless parameter that together
with a determines the height or depth of the potential.
The parameter «, with units of inverse of length, controls
the half-width _of the potential which reads d)
=2a" " arccosh y2. The larger « is, the narrower and higher
(deeper) the potential becomes. The Schrédinger equation for
the Poschl-Teller potential is analytically solvable and its so-
lutions are well known.*>#? Its asymptotic transmission ma-
trix for positive energies reads*?

&1 +w? —iw

m=(" o 2)

w e T +w

where

i b 1 1

sinh(7k/ «) 2 4
T . I'%(ik/ @) @

= — ar s
T T+ i) (1 = b+ ikla)

k=\2mE/# and I'(z) is the complex Euler gamma function,
w is always a real quantity as can be seen in its alternative
definition w=cosh(m\V—-1/4)/sinh(k7/«). The matrix has
the symmetries corresponding to a real and parity invariant
potential. The dimensionless amplitude in terms of b reads
V=-=b(b-1) which is the usual form found in the literature.
Let us remark that the above expressions are only valid for
positive energies since several simplifications have been car-
ried out with the assumption of k€ R. From Eq. (2) the
asymptotic probability of transmission is T=(1+w?)"'. One
characteristic feature of this potential is that 7=1 for all en-
ergies whenever b is a real integer. Hence an absolute reso-
nant transmission occurs for potential wells with V=-2,
—-6,-12,-20,..., independently of the value of «a.

In the case of potential wells (V<<0) several bound states
exist, that can be calculated from the poles of the transmis-
sion amplitude by making a proper extension into the com-
plex plane via k— in, where 7 can be considered to be posi-
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FIG. 2. Bound states for the Pdschl-Teller well. The solid curves
mark the position of the eigenstates given by Eq. @ The dashed
line mark the position of the bottom of the well (=|V/|). The dotted
grids highlight the integer and the half-integer states.

tive without loss of generality. The correct form of the
transmission matrix for negative energies reads

fl=m -q )
M= , 5
( g fln) )
where

i sin(b)

7= sin(ry/a)’ ©)
1‘*2

S = — 2L )

FrA-b+9a)'(b+7nla)

The condition for bound states is then f(7)=0. Since for
potential wells b is real and greater than 1 the eigenstate
equation reduces to I'"'(1—b+7/a)=0, which is satisfied
whenever the argument of the gamma function equals a
negative integer or zero. Finally, the energies of the bound
states are

R I

m=1,2,3,....[b], (8)

=b-m,

where [b] reads the integer part of b. Therefore the Pdschl-
Teller well host in general [b] bound states equally spaced in
the variable 7=\2m|E|/# (Fig. 2), except for resonant wells
which host b—1 bound states. A couple of peculiar cases
deserve comment.

(1) If b is an integer then the energies of the bound states
are also integers. 7/ a=m, m=1,2,...,b—1. This is also the
case for which the potential well behaves as an absolute
transparent potential for all energies (resonant well). Ex-
ample values for the dimensionless amplitude V=-2,-6,
-12,-20,-30,....

(2) If b is a half integer then the energies of the bound
states are also half integers. n/a=m+1/2, m=0,1,...,b
—3/2. In this case the transmission takes the form T
=tanh?(7k/ @) independently of b. Some values of the di-
mensionless amplitude for this situation are V=-0.75,
-3.75,-8.75,-15.75,-24.75,... .
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FIG. 3. Potential of a disordered Poschl-Teller

We shall see how due to the characteristic features exhib-
ited by the Poschl-Teller potential some exciting effects arise
when several potential units are connected.

III. BUILDING LINEAR CHAINS

To build a chain with the potentials described, one must
do the approximation of considering that each potential unit
has a finite range. Hence a cutoff must be included in the
Poschl-Teller potential. Using this approximation one obtains
matrices suitable to be composed in linear chains. Let us
suppose that the potential is appreciable only inside the in-
terval [—d*,d®], where the superindices L, R, stand for the
left and right lengths of the interval from the center of the
potential (Fig. 1). Outside this interval the wave function is
assumed to be a superposition of the free particle solutions.
After some algebra one finds that the transmission matrix for
the cutoff potential reads***

ei[‘p+k(dR+dL)]Vyl )
Mcut =

L (R L
— iweKd=d)
—ik(dR-db)

e—i[<p+k(dR+dL)] [

iwe V1 +w?

)

The cutoff matrix is the same as the asymptotic one plus an
extra phase term in the diagonal elements that accounts for
the total distance (d®+d") during which the particle feels the
effect of the potential, and also an extra phase term in the
off-diagonal elements measuring the asymmetry of the cutoff
(dR—-d"). These phases are the key quantities since they will
be responsible of the interference processes that produce the
transmission patterns. The goodness of this procedure de-
pends on the decay of the potential. In our case due to the
rapid decay of the Poschl-Teller potential the cutoff distance
admits very reasonable values. In fact we have seen that for
a sensible wide range of the parameters « and V, one can
take as a minimum value for the cutoff distance dy=2d,,,
=3.5/a, where d,), is the half-width. Taking d“f=d, the
connection procedure of potentials works really well, as we
have checked in several cases comparing the analytical com-
position of matrices versus a numerical integration of the
Schrodinger equation for the global potential. The above ma-
trix can be used to study analytically and numerically the
scattering process of different Poschl-Teller composite po-
tential profiles.*?

IV. WIRES WITH UNCORRELATED DISORDER

Once the properties of the potential have been studied and
the procedure for constructing linear arrays has been de-
scribed, let us consider now the effects of uncorrelated dis-
order upon this particular model. First is obtaining the ca-

wire.

nonical equation applying to the electronic states inside the
system. From the transmission matrix (9) one is led to the

following relation: 443
_ K. K.
Wi =(Sj+5j—1EL>‘I’j_qu’j—l’ (10)
J-1 J-1

where

§j=—wj sin[k(df—df)]+ V1 +w12- cos(P;), (11)
S;=w; sin[k(djL- - df)] +V1+ ng cos(d)), (12)

K;=w;cos[k(d —df)]+ V1 + w7 sin(®)), (13)

in terms of w and ¢ defined in Egs. (3) and (4) and ®;
=k(df+df)+<pj. The amplitudes W; correspond to the value
of the state at the junction points of the potentials as shown
in Fig. 3, and in this case each potential is determined by
four parameters d#,df,aj,Vj. For negative energies the ca-
nonical equation reads the same but the functions must be
defined as

I : L R
Sj=aq; sin 9l ~ )]

1 L, R L, R
+ LMD i)+ D = ), (14)

: L_ R
S;=q; sinh[ 9(d; - d})]

1 LR L. R
+ L™ D) + D= )], (15)

K;=gq; cosh| n(df - df)]
1 L R L R
+ E[e_”(dﬁdj fi(= ) =™ r ()], (16)

in terms of g and f(7) defined in Egs. (6) and (7). The ca-
nonical equation functions adopt a simpler form if the cutoff
of the potentials is chosen to be symmetric and in this case
5;=S5,.

The properties of the uncorrelated disordered chain in the
thermodynamic limit, composed by different species with pa-
rameters {VYE(di,d';,ay,Vy)} and concentrations {c,} are
obtained from the functional equation formalism which is
thoroughly explained in Refs. 44 and 45. Let us make a brief
description for this model. One needs to solve the following
set of functional equations:
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FIG. 4. (Color online) DOS and Lyapunov exponent (black) for several disordered Poschl-Teller wires with parameters (a) V,[c,]:
-4{0.5], 3[0.5], (b) V,[c,]: 5[0.5], 7[0.5], (¢) V,[c,]: =1[0.5], =3[0.5], and (d) V,[c,]: 1[0.2], 6[0.2], —5[0.2], —1[0.2], 9[0.2]. Notice the
different vertical scales for DOS (left) and X\ (right). The negative part of the abscissa axis represents negative energies (—7/ ).

W.(0) = > cg Wﬁ[Tl(a;Vﬁ,Vy)] - W[;(g) + (v v,) |,
B
(17a)
W (0+nm) =W, (0)+n, 6¢e[0,m),nel, (17b)

where the subindices 7y, runs over all species, d(vg,V,)
=1if [K(vp)/K(v,)]>0 and &(vg,v,)=0 otherwise, and

) K(v) 1
T 1(0;V57V7) = arctan{K_(:S(J(VB’Vy) - m>}’

(18)

with J(VB,VY)=§(V7)+S(V5)K(V7)/K(V5), where S, S, and K
are the functions of the canonical equation. From the solu-
tions {Wy( 0)} of the functional equations one can obtain the
Lyapunov exponent and the DOS of the disordered system in
the thermodynamic limit. The inverse of the localization
length comes from

1 w
Me) = 52/3 cycBJO dW.(O)In F(6;v,.vg),  (19)
Y

where e=k/« is a dimensionless representation of the en-
ergy, « is a reference value for the parameters a,, and
K(v 2
F(O;v,,vp) = cos? 6+ (J(vy,vﬁ)cos 06— —(é) sin 0) .
K(v,)
(20)

And the DOS in the thermodynamic limit per piece of length
a! reads

(aJa) dW7<72_T)
2(@= | — L otk le,— . @1)
y ald,+d) de

The functional equations are solved numerically for each
value of the energy, then the localization length and the dis-
tribution of states can be obtained using definitions (19) and
(21). On the one hand, the fact that the potentials are deter-
mined by four independent parameters gives a high degree of
versatility to the model, but on the other hand specifying the
configuration of the disordered wire including several spe-
cies can be really a tedious and repetitive task since one
needs to list a large amount of parameters. Therefore, from
now on whenever the only configurational parameters of a
chain are the dimensionless amplitudes {V.}, it is implied
that a,=« for all species included in the chain and also that
the cutoff is symmetric and its distance is set to d=4/a, so
that the total length of every potential is 2d=8/«a. Several
examples of distributions of states and Lyapunov exponents
in the thermodynamic limit for different Poschl-Teller disor-
dered wires can be seen in Fig. 4.

A. General features of the DOS

In the examples given in Fig. 4 the salient features of the
distribution of states for this model can be observed. As must
be expected, whenever potential wells are included in the
disordered chain a group of permitted levels appears for
negative energies, which correspond to bound states of the
global composite potential. For positive high energies the
correct asymptotic value of the free particle distribution is
reached in all cases [it can be easily checked that the
asymptotic value is gpe(€)=7']. As with other one-
dimensional models,**¢ for the P6schl-Teller disordered
wires the density of states in the thermodynamic limit also
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FIG. 5. DOS for a binary disordered Poschl-Teller wire with
parameters V=1 and V,=-1 and equal concentrations. d; indicates
the fractal dimension of the portion of the DOS contained between
the dashed lines.

shows an irregular fluctuating behavior in certain energy
ranges. The peaky structure lies almost entirely in the energy
range below the maximum height of the potential barriers
constituting the array. When the energy goes over the top of
the potential barriers [e=(a,/a@)\V,], the carriers found a
regular distribution of states that evolves smoothly towards
the value 7! as the energy grows. This description agrees
with the intuitive reasoning that for energies exceeding the
barriers the effects of the potential and hence of the disorder
must drastically decrease. In the cases when the system con-
tains only potential wells, the DOS is regular for almost all
the positive spectrum [Fig. 4(c)] and the asymptotic value
&iree( €) 18 reached for very low energies. The structure of the
positive spectrum is naturally much more complex when the
chain includes potential barriers. Regarding the sharp-
pointed structure, we are led to the conclusion that the DOS
lacks differentiability at all points within this irregular re-
gions. In fact several analysis can be performed on the dis-
tribution of states yielding the conclusion that the density of
states for the disordered Poschl-Teller wires in the thermo-
dynamic limit exhibits a fractal behavior in certain energy
ranges. We have been able to quantify numerically the fractal
dimension of the distribution. For the binary wire considered
in Fig. 5 the analysis yields a fractal dimension d;=1.5526 in
the interval € € [0.88, 1] and d;=1.0038 for the smooth inter-
val ee[1.72,1.85] where the fractal dimension tends to
equate the topological dimension of a curve. This fractal be-
havior is apparently a consequence of the presence of disor-
der and it seems to occur in other one-dimensional models as
well.*® A thorough study on this interesting feature of the
distribution of states and its relation with the type of disorder
will be reported elsewhere.*’

B. Electronic localization

Let us have a look at the electronic localization for this
disordered model. From what can be seen in Figs. 4 and 5
the Lyapunov exponent registers globally the localization of
the electronic states. As expected, the localization length in-
creases with the energy. When potential barriers are included
in the chain, it can be noticed how for energies above the
maximum barrier height the electrons become strongly delo-
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calized. If the wire is composed only of potential wells, the
Lyapunov exponent takes very low values for almost all the
permitted positive spectrum. As can be seen in the examples
given, the Lyapunov exponent tends to decrease in the peaks
of the DOS and increase in the troughs. It seems that the
state is less localized when it lies on a range containing a
large number of permitted levels close to its energy, whereas
on the contrary an isolated energy shows always a stronger
localization. Let us remark that localization is always weaker
inside the nonfractal regions of the spectrum, whereas frac-
tality of the distribution of states seems to be linked to a
strong localization. The most important feature concerning
the electronic localization is the presence of isolated energies
for which the Lyapunov exponent vanishes (Fig. 4). These
critical energies are always located inside nonfractal regions
of the spectrum, they appear apparently only for binary
chains and their values depend on the compositional species.
Before going into a detailed analysis, let us remark that the
localization properties deduced from the behavior of the
Lyapunov exponent are also faithfully confirmed by the in-
verse participation ratio (IPR) calculated for finite chains af-
ter averaging over several realizations of the disordered se-
quences (Fig. 6). The IPR is defined in terms of the
amplitudes of the electronic state at the different sites of the
system as

N
2yt

J=1

(S

For an extended state the IPR takes values of order N~!
whereas for a state localized in the vicinity of only one site it
goes to 1. The inverse of the IPR means the length of the
portion of the system in which the amplitudes of the states
differ appreciably from zero.

The isolated resonances of the spectrum seem to be inde-
pendent of the concentrations of the binary chains, as can be
seen in Fig. 7, where the evolution of the Lyapunov exponent
with the concentration of the disordered wire is shown. Let
us notice that when the chain is partially or totally composed
of potential barriers the resonances can occur for energies
below or above the maximum barrier height as can be
checked in the different examples given. Around every reso-
nance there exists a range of energies in which the Lyapunov
exponent takes very low values and the higher the energy of
the resonance the wider this interval is. In fact, the number of
resonances may be infinite but above a certain energy they
are indistinguishable since the Lyapunov exponent is almost
Zero anyway.

The appearance of the extended states shown in the ex-
amples given can be explained by the arguments given by
Gomez and co-workers for a square barrier model,*® based
on the commutativity of the product of the individual trans-
mission matrices of the system, that we shall review here. In
the case of a binary chain composed of matrices M;,M,,
critical energies €, can be found among those that satisfy
[M,,M,]=0. This is a necessary condition but not a suffi-

IPR = (22)
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FIG. 6. (Color online) Comparison of Lyapunov exponent (a)
and IPR (b) as functions of the energy, for different binary disor-
dered chains. The parameters for the different chains are V,[c,]:
-1.5[0.5], —4[0.5] (solid), 1[0.5], 3[0.5] (dash), 5[0.5], 7[0.5]
(dash-dot). The IPR is obtained averaging over 100 realizations of a
1000-atom array.

cient one. Now since for these energy values the matrices of
the two species commute, the disordered sequence can be
changed at will and therefore the effects of the disorder dis-
appear. Let us imagine that the atoms are rearranged so that
the sequence becomes a juxtaposition of two semi-infinite
pure chains. It is clear that the transparency intervals com-
mon to both pure chains are also transparent. Therefore if €,
lies on the permitted bands of both species pure chains it will
be a resonance of transmission and an extended state in the
thermodynamic limit. Let us remark that this reasoning holds
for all values of the concentrations in the binary array. To
summarize, in a binary disordered system extended states
exist at energies €. fulfilling the following requirements:
commutative matrix product ((M;,M,]=0), and they belong
to the permitted spectrum of both species. For the Poschl-
Teller model the commutator of the transmission matrices in
the more general case reads

[MI’MZ:l: (2:' yi)» (23)

where

y == 2iw,w, sin[k(dt — d% - d& + d¥)], (24)

z= Zeik(dl;_dé)wz\y 1+ wi sin[k(d% + d¥) + ¢,]
—2eMdi=dDy, T 42 sin[k(d: +d%) + @], (25)

that for the critical energies must be zero. And the condition
of belonging to the permitted spectrum of the pure chains
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FIG. 7. (Color online) Evolution of the Lyapunov exponent vs
energy and concentration for disordered binary wires with param-
eters V,=-2.5, V,=5. Resonances occur at €.=1.809, €.=2.226.
The top mapping shows the Lyapunov exponent in a color scale.
Notice how the resonances are present for all concentrations.

can straightforwardly be written from the trace of the trans-
mission matrix

N1+w7 coslk(dy +df) + @] <1, j=12. (26)

In the case of symmetric potentials with the same «, the
commutator can be written in a very simple form and seem-
ingly for all values of the dimensionless amplitudes V;, V,
there exist critical energies, similar to the ones observed in
Figs. 4, 6, and 7. For asymmetric species with different « it
is also possible to find extended states very easily without
doing awkward or very restrictive fits of the parameters (Fig.
8). This kind of resonance, that we shall refer to as commut-
ing resonances (according to Ref. 48), appear very often and
they are very versatile in the sense that their presence seem
to be compatible with a wide continuous range of several
parameters of the potentials.

Finally in the case of a binary chain in which the eight
parameters of the system (four for each species) are chosen
freely, one would expect in principle to see no resonances in
the spectrum, since in this case it will be more difficult to
satisfy all requirements for a critical energy to exist. In this
situation one can still find several energies for which the
Lyapunov exponent takes very low values although it does
not vanish completely. An example can be seen in Fig. 9.
This behavior happens at energies for which the resonance
condition is close to be satisfied, i.e., the commutator of the
transmission matrices is relatively small and the energy lies
near or in the common permitted spectrum of both species.
This fact can be clearly observed in Fig. 9 where the
Lyapunov exponent is plotted together with the Euclidean
norm of the commutator of the transmission matrices
[[M,,M,]||. The \(e) decreases strongly near the minima of
the norm of the commutator. This kind of energies appears
surprisingly very often when choosing the parameters of the
binary system freely, and that is due to the nature of the
elements of the commutator. The functions y, Re(z) and
Im(z) are oscillatory functions whose amplitude decay with
the energy, hence even when choosing all the parameters of
the chain at random there exist always some energy intervals
within which all the functions crosses zero relatively near
from one another. It is remarkable the fact that inside the
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FIG. 8. (Color online) DOS and Lyapunov exponent (black) for
binary chains. (a) Two species with symmetric cutoff: a;=a, V,
=-1,d=4.5/a; and a,=195a, V,=2, d,=4.1/ a,. The three first
resonances occur at €.=1.6818, €.=2.3986, and €,=3.1064. Notice
that the first two resonances are located below the barrier height
€max=1.95V2=2.76. (b) Two species with asymmetric cutoff: a,
=a, Vi=1, d¥=52/a,, d¥=42/a; and a,=15a, V,=3, d&
=6.8/ ay, d§=5.3/ a,. The first four resonances occur at €,
=1.7434, €.=2.0618, €.=2.3865, and €.=2.7143. Notice that the
first three resonances are located below the highest barrier €,
=1.5V3=2.60.

common permitted spectrum of both species the norm of the
commutator as a function of the energy describes qualita-
tively the behavior of the Lyapunov exponent. It seems that a
strong contribution to the localization length could come
from the commutator of the transmission matrices. To quan-
tify this contribution it would be necessary to deepen in the
physical meaning of the commutator within this context, but
this task surely requires a more profound analysis.

Commuting resonances naturally emerge for a binary sys-
tem but they could also be found in ternary and higher
chains. In fact we have done so for a ternary chain, although
the fit of the parameters is much more restrictive as N grows
in comparison with the binary case. For N species all the
binary commutators must vanish and at the same time the
energies must belong to the permitted spectrum of all spe-
cies. In the Poschl-Teller model there exists an upper bound
for the number of species to find commuting resonances,
since the equations of resonance condition grows quadrati-
cally with N and the number of variables (parameters of the
potential) does linearly.

Extended states can also appear in the thermodynamic
limit of disordered systems by imposing different conditions
in principle, such as, for example, the one introduced by
Hilke and Flores to describe extended states in a square
barrier/well model.** The condition consists in imposing

W, ==V, for all sites of the system. Clearly if all species of
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FIG. 9. (Color online) Lyapunov exponent (solid line) for a
binary chain with random parameters a;=a, V;=-4, dll‘=4/ a,
d¥=5/a; and a,=1.8a, V,=1, d5=6/a,, d3=4.5/ a;. The dashed
line corresponds to the Euclidean norm of the commutator of the
transmission matrices. Shaded zones highlight the common permit-
ted spectrum of both species. The upper box combines density of
states and Lyapunov exponent.

the chain satisfy this constraint for the same energy a trans-
mission resonance arises in the thermodynamic limit. Our
Poschl-Teller disordered wires can also host extended states
of this kind. Let us see how one can build them by imposing
the specific conditions to the transmission matrices of the
individual species included in the system. Let us consider the
transmission matrix of a real potential ranging in the interval
[xj,xj,1]. Tts transfer matrix is an element of the group
SU(1,1) and it connects the amplitudes of the traveling plane
waves e** on both sides of the potential (A j»B)) and
(Aj11.Bjs1). The coordinates are chosen to ensure that the
state right before the potential W';, and right after the poten-
tial W, is simply given by the sum of the respective com-
plex amplitudes. Then, one can wonder about the form the
transmission matrix must adopt to satisfy the condition
W;,;==W,. It can be easily calculated that the transmission

J
matrix must fit the expression

+l—ia —ia

. ) ), a e R. (27)
ia +1+ia

Thus whenever the transmission matrix takes this form, the
probability distribution of the state does not decay after the
individual potential but it remains constant. Trivially, the ma-
trices (27) constitute a subgroup of SU(1,1). Then a disor-
dered linear array of potentials which can be described in
terms of these matrices will give rise to a completely ex-
tended state with a flat probability distribution. Imposing the
given form to the most general transmission matrix for a real
potential

A B
(b 2 polgper e
J Aj

one is led to equations
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Im(A;) =Im(B;), (29a)

Re(B)=0, Y, (29b)

and they straightforwardly guarantee that Re(A;)==1. This
latter condition implies that the energy is a common band
edge of the periodic spectrum of all species. Therefore, this
kind of extended state corresponds to a certain class of com-
mon band edges of the spectrum of the individual species
composing the wire. If the individual potentials are symmet-
ric the above conditions are simplified since Eq. (29b) is
identically satisfied. Notice, however, that not all common
band edges of symmetric potentials will be resonances since
Eq. (29a) needs to be fulfilled.

Now in the case of a disordered binary Poschl-Teller wire,
one could choose the values of the parameters of the poten-
tials so that there exists an energy €. for which the matrices
of both species take the form (27). From Eq. (9) it follows
that the conditions for €. to exist are

VI + wjz- sin[k(df + df) + <Pj] =—Ww; Cos[k(df - dJL)]’
(30a)

wjsinlk(d) —d?)]=0, j=1,2. (30b)

For the sake of clarity let us restrict to the default case of
symmetric cutoff d=4/a, and the same « for both species. In
this case the only constraint is

V1+w7 sin(8e, + @) +w;=0, j=1.2, (31)

or K;=0, using the canonical equation function (13). There-
fore for a fixed V; one chooses one of the infinite roots of
K (e) to place the extended state, namely €,, and then equa-
tion K,(€.)=0 is solved in terms of V,. In some cases several
solutions exist for the latter equation. Then the Lyapunov
exponent will vanish at €, for the disordered binary chain
independently of the concentrations. A couple of examples
are shown in Fig. 10 where the Lyapunov exponent for two
binary chains is plotted. Notice that the existence of this kind
of extended states is compatible with the presence of
commuting-resonances. In fact matrices (27) constitute an
abelian subgroup of SU(1,1) as can be straightforwardly
checked, which means that the resonances arising from the
common band edges are in fact particular cases of
commuting-resonances arising from a very precise fit of the
parameters of the different species. These extended states are
exactly of the same type as the 7 resonances for the delta
model with substitutional disorder,*® since for the multiples
of 7 the matrices for the delta potential commute with each
other independently of the potential coupling, and these en-
ergies are always band edges of the periodic delta chain in-
dependently of the delta coupling. Although these critical
energies are also commuting resonances we shall refer to
them using a different label, let us call them CBE resonances
(common band-edge resonances). The CBE resonances and
the rest of commuting-resonances exhibit very different fea-
tures as we shall see.

Let us check the functional dependence of the Lyapunov
exponent and the density of states near the resonant energies.
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(a) 0.5 1 1.5 2
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FIG. 10. (Color online) DOS and Lyapunov exponent (black)
for binary chains with parameters (a) V,=-4, V,=1.571051 and (b)
V=4, V,=7.217957 with equal concentrations in both cases. The

CBE resonances are located at €,=0.814459 and €.=2.56389,
respectively.

In the case of CBE resonances a careful inspection reveals an
asymmetric behavior of the Lyapunov exponent around the
critical energy. Seemingly it can be well described by

[}

A e-e 32
(6) |6— 6c|1/2, ( )
on the different sides, as can be observed in Fig. 11(a). The
DOS apparently behaves in the same way as for a periodic
chain near a band edge: gap on the side where the critical
exponent for \(€) is 1/2 and dependence of the type g(e)
~|e—€["* on the side with the linear change of the
Lyapunov exponent. The behavior near the CBE resonances
is apparently the same as for the 7 resonances in most of the
delta chains.*>* These resonances seem to exhibit similar
features independently of the potential model. From the de-
pendence of the DOS and the localization length near the
critical energy, it straightforwardly follows that the number
of states around the CBE resonance whose localization
length is larger than the system size, in a finite chain, scales
as VN where N is the number of atoms.

On the other hand the behavior of the distribution of states
and the localization length in the vicinity of a general
commuting-resonance is completely different. In all cases
studied the Lyapunov exponent seems to fit a quadratic de-
pendence around the critical energy A\(€)~ (e—e€.)?, where
the coefficients for e<e. and €> €. can differ. The DOS
around these resonances evolves linearly g(€)~ g+ (e—€,).
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FIG. 11. Behavior of DOS and Lyapunov exponent near critical
energies for binary wires. Symbols mark numerical results. (a) V,
=—4 and V,=1.571051 with equal concentrations. CBE resonance
located at €.=0.814459. Notice that for the Lyapunov exponent the
vertical scales are different before and after the resonance to ensure
an optimal visualization. Solid lines correspond to fits according to
expression (32) for \(e) and g(e)~|e—¢€[7"%. (b) V;=5 and V,
=7 with different concentrations. Commuting-resonance located at
€,=2.601. Solid lines correspond to quadratic fits for A(€) and lin-
ear fits for DOS.

It all can be observed in Fig. 11(b). With the dependence
described for \(e) and g(e), it follows that in a finite system
the number of states near the commuting critical energy WiLh
a localization length larger than the system size scales as VN,
the same as for the CBE resonances. This scaling is exhibited
by very different disordered models with isolated extended
states in their spectra>>!3? and it might be a universal feature
of isolated resonances in one-dimensional disordered sys-
tems. The DOS and the Lyapunov exponent seem to balance
their functional dependence near the critical energies to en-
sure the VN scaling.

The different characters of the two types of extended
states described also manifest themselves in the way that
transmission resonances appear close to the critical energies
for finite chains. In the vicinity of the CBE resonances one
finds the behavior shown in Fig. 12. As the length of the
system increases, the states corresponding to transmission
resonances, marked by a sharp decrease of the Lyapunov
exponent, start approaching the exact value of €, [notice that
for finite chains the Lyapunov exponent is obtained from the
transmission of the system according to A=—(2N)~!In 7.
The larger the system is the more the states squeeze together
near the critical energy [Fig. 12(b)]. It may be surprising that
the exact value €. is not a transmission resonance when the
length of the chain is finite. This energy becomes a resonance
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only when the length of the system goes to infinity. The
reason for this is clear: the nature of transmission resonances
is absolutely determined by the boundary conditions. There-
fore when one considers a finite length system, the reso-
nances arise at the energy values for which the states can
satisfy the proper scattering boundary conditions at the ex-
tremes of the system with a high value of the transmission,
and one expects the fulfilling of the boundary conditions to
depend on the length and on the sequence of the chain. Then,
the appearance of transmission resonances in the spectrum of
a finite disordered system is an agreement between two fac-
tors: the spatial extension of the state and the boundary con-
ditions. The former determines the range of energies in
which one could find high transmission efficiencies (i.e., a
range with low values of the Lyapunov exponent and the
IPR) and the latter establishes the precise values of the en-
ergies within this range where the resonances occur. Of
course this effect only becomes apparent at a very small
scale of energies. Inspecting the IPR around €., one finds that
for a small scale of energies the inverse participation ratio
does not reproduce the behavior of the Lyapunov exponent,
so that the transmission resonances cannot be correctly iden-
tified from this quantity. For the different lengths considered
the IPR reaches its minimum value N~! exactly at €, and for
higher energies it shows higher values of the same order of
magnitude [Fig. 12(a)]. The behavior of the IPR can be un-
derstood by observing the explicit form of the envelope of
the electronic state at different energies. In Figs. 12(c) the
envelope of the states at €. and at two energies with high
transmission for the 1000-atom chain can be seen. The IPR
gives us information about the spatial structure of the state,
but since it is a normalized quantity it lacks any information
about the amplitude of the state, which is essentially the
transmission. Hence the IPR does not retain all the informa-
tion about the boundary conditions. It can be observed how
the state (c.1) is strictly more extended that (c.2) and (c.3)
which have valleys with zero amplitude, therefore one ex-
pects the IPR in the first case to be smaller than for the other
two cases. However, the amplitude for (c.1) is almost zero
[T=3.7X1077] while for the other two energies the states
live with a transmission coefficient noticeably higher. If the
length of the system grows, the amplitude of the state for e,
would increase so that for an infinite system the state would
be perfectly flat with amplitude 1. As a summary, the IPR
ignores everything concerning the value of the global ampli-
tude of the state and although open boundary conditions are
absolutely necessary to build the state correctly, the informa-
tion of the transmission coefficient is not contained in the
IPR, and this makes it useless for identifying the exact ener-
gies of transmission resonances of a finite system within very
small ranges of energy. On the other hand, this fact means
that the IPR retains the information of the thermodynamic
limit and as can be seen in Fig. 12(a) the minimum value N-!
is reached independently of the length of the system at the
energy €., which we know to be an extended state in the
thermodynamic limit. It seems that this behavior of the IPR
is a fingerprint of the existence of a CBE resonance and, in
principle, could be useful for identifying such states in other
models by studying finite realizations of the systems. Finally,
we have also studied the Lyapunov exponent and the IPR
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FIG. 12. (Color online) IPR (a) and Lyapunov exponent (b) near
a CBE resonance for a binary chain with parameters V;=2 and
V,=-2.6422653344 with equal concentrations. The critical energy
is €,=0.9270063568. The horizontal dotted lines mark the inverse
of the length of the system in the different cases considered. Inside
graphics (a) and (b) the length of the chain increases from top to
bottom. For a given length, data of all graphics correspond to the
same disordered sequence. Only one realization of the disorder has
been considered for each length. Graphics at the bottom show the
envelope of the electronic state for the chain with 1000 atoms for
three different energies corresponding to transmissions (c.1) T
=3.7X 1077, (c.2) T=0.8207, (c.3) T=0.9955.
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averaging over several realizations of the disorder for a given
finite length. And we are led to the conclusion that the be-
havior near the CBE resonances depends mainly on the
length of the system and exhibits a weak dependence on the
particular disordered sequence, since all the individual trans-
mission matrices behaves essentially in a similar manner in-
dependently of the atomic species. After averaging, the hol-
lows of the LE are slightly broadened in energy and
shortened in height but they still appear at the same energies
and the IPR shows the same aspect as for a single realization
of the disorder. This confirms the fact that at this energy
scale the IPR contains the information of the system in the
thermodynamic limit. This strong dependence on the number
of sites and not on the particular sequence explains why
when the length of the system is increased proportionally, as
in Fig. 12(b), the transmission resonances appear following a
self-similar pattern.

Let us see what happens in the vicinity of a general com-
muting resonance. It is remarkable that the IPR for a finite
system shows a characteristic plateau around the critical en-
ergy [Fig. 13(a)]. This flat zone gets narrower as the length
of the system increases and it seems to be essentially sym-
metric around €., which is in perfect agreement with the
symmetric dependence of the Lyapunov exponent with the
energy in this region in the thermodynamic limit. However in
Fig. 13(a) it can be noticed that the IPR does not reach its
minimum value N~! for any energy. Nevertheless the inverse
participation ratio for different lengths takes a value at €, that
seems to scale roughly as IPR(EC)~%N‘1. Inspecting the
Lyapunov exponent at a very small energetic scale near €, it
can be observed how as the length of the chain grows the
number of transmission resonances increases following a
symmetrical arrangement around the critical energy [Fig.
13(b)]. This is in great contrast to the CBE critical energies
for which the transmission resonances are only located on
one of the sides of €. In Fig. 13(c) one can have a look at the
appearance of the envelope of the electronic states with open
boundary conditions near the critical energy for a chain with
1000 atoms. The states show a strongly fluctuating behaviour
that seems to be modulated in a periodic manner. Apart from
the differences in the global amplitude and the transmission,
the three states shown exhibit essentially the same features.
For the cases in Figs. 13—(c.2) and (c.3)—whose energy is
not exactly the critical value, the periodic modulation starts
to be subtly distorted. The spatial distribution of the states
explains the behaviour of the IPR. First, all states near the
critical energy have essentially the same structure leading to
similar values of the IPR and therefore the plateau. And sec-
ond, the fluctuating nature of the envelope of the states pre-
vents the IPR from reaching its minimum value N~!, which
requires of the envelope of the state to be flat. In Fig. 14, one
can observe how the state at the critical energy evolves as the
concentration of the wire is changed for a finite binary sys-
tem including 500 atoms. For pure one species chains the
envelope shows a perfect periodic modulation, although the
latter period sometimes can be larger than the size of the
chain. The electronic state registers a morphing process
through the disordered configurations between the two lim-
iting pure cases and it always remains completely extended
over the array. Let us also comment that within this small
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FIG. 13. (Color online) IPR (a) and Lyapunov exponent (b) near
the critical energy €,=1.808977 for a binary wire with parameters
Vi=-2.5 and V,=5 with equal concentrations. The horizontal dot-
ted lines mark the inverse of the different lengths considered. Inside
graphics (a) and (b) the length of the chain increases from top to
bottom. For a given length, data of all graphics correspond to the
same disordered sequence. Only one realization of the disorder has
been considered for each length. Graphics at the bottom show the
envelope of the electronic state for the chain with 1000 atoms for
three different energies corresponding to transmissions (c.1) T
=0.1067, (c.2) T=0.9999, (c.3) T=0.8537.

scale of energies near the commuting resonances, the influ-
ence of the atomic sequence is much more important than in
the case of CBE resonances, because the structure of the
envelope of the wave function at a local level is fully deter-
mined by the atomic sequence. Of course this dependence on
the realization of the disorder gets weaker as the system
grows. This influence can be noticed in Fig. 13(b), where the
arrangement of the hollows of the Lyapunov exponent (i.e.,
resonances of the transmission) for different N seems more
irregular than in the case of a CBE resonance (Fig. 12), al-
though the length of the system is increased by the same
factor in both cases. Only for the chain with 16 000 atoms
the self-similar pattern in the appearance of transmission
resonances emerges, manifesting that the effect of the length
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T
A 7

FIG. 14. Evolution of the envelope of the electronic state at a
commuting critical energy as a function of concentration, for binary
disordered wires with open boundary conditions. (a) V,=-2.5, V,
=5 and €.=1.808977, (b) V=5, V,=7 and €,=2.600753. In all
cases the system includes 500 atoms and the states are properly
normalized to make the comparison possible.

of the system has become stronger than the effect of the
particular sequence.

Finally, we carried out the multifractal analysis for states
near the commuting critical energies. This is somehow mo-
tivated by the fluctuating structure of the wave functions and
also as an additional check of their real extended character.
The multifractal analysis was first introduced to characterize
the structure of a fractal distribution at various spatial scales
via a set of generalized fractal dimensions.>® The applicabil-
ity of this tool to the study of electronic states comes from
critical wave functions, which exhibit an intricate oscillatory
behavior that may include self-similar fluctuations at differ-
ent spatial scales (see Ref. 54 for a nice dissertation about
critical states among many other things). Regarding elec-
tronic states, the multifractal analysis essentially studies the
scaling of the different moments of the probability distribu-
tion of the state with the length of the system N. Those
moments are defined as

(33)

and the corresponding generalized fractal dimensions D, are
obtained from the scaling law u,(N) ~ N~@=DPq for large N.
Let us notice that the second order moment u, is the inverse
participation ratio. The multifractal analysis is useful in order
to decide on the localized or extended character of a given
state, since one finds D,=0 for all ¢>1 for a localized state
whereas in the case of extended states, which spread over the
whole system and show no fractal structure at all, D, equals
the spatial dimension of the system for all g> 1. In Fig. 15 it
can be seen for a binary wire that at the critical energy the
moments considered scale with the length of the system ac-
cording to D,=1 confirming the extended character of the
state, whereas for energies slightly deviated from the critical
value the localized nature arises for a long enough system
and the generalized fractal dimensions go to zero.

To close this subsection the summarized characteristics of
the different types of extended states described can be found
in Table I. Although those features correspond to the Poschl-
Teller model, we have studied that in the case of CBE reso-
nances the delta model exhibits the same behavior,* there-
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FIG. 15. (Color online) Multifractal analysis for a binary wire
with parameters V;=-2.5, V,=5 with equal concentrations. The
moments considered range from g=2 to ¢=8. Dashed lines corre-
spond to equation g, (N)=N-7"1,

fore it would be very interesting to study whether the
features of a given resonance (critical exponents, behavior of
IPR, electronic envelope, etc.) are fully determined by the
nature of the critical energy or on the contrary are also de-
pendent upon the particular potential model.

C. Negative spectrum of the disordered wires

Let us have a look at the spectrum of bound states of the
Poschl-Teller wires. Most of the times the negative spectrum
of disordered systems is not studied since it is not directly
involved in the transport processes. The negative spectrum of
our model exhibits interesting features very similar to those
of the positive spectrum, that we shall briefly describe. One
can wonder about the degree of localization of the electronic
bound states. For negative energies the localization can still
be characterized via the Lyapunov exponent even though its
physical meaning cannot be defined in terms of the rate of
decreasing of the transmission with the length of the system.
The well defined meaning of the Lyapunov exponent for
negative energies is guaranteed by Oseledet’s multiplicative
ergodic theorem (MET) (a complete analysis can be found in
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Ref. 55), as the quantity that measures the exponential diver-
gence of an initial vector under the action of a product of
random matrices. The continuous transmission matrices for
negative energies are given in definition (5). The initial vec-
tor of amplitudes for the bound states must be A;=0,B,=1,
where the amplitudes correspond respectively to the expo-
nential solutions of the Schrodinger equation e™, e, where
1n=\2m|E|/#. Then the MET implies that the Lyapunov ex-
ponent comes from

N
A= lim v VM2, + M3, (34)

N—ox

where M is the global matrix of the system. Since the final
condition for a state to be bound is M,,=0, one can equiva-
lently characterize the electronic localization in a sufficiently
large but finite system through

1
N=—1In|M,,|. 35
N n| 12| (35)

Then the Lyapunov exponent for bound states can only be
understood as a measure of the inverse of their localization
length £ '(E)=\(E) and the above definition is the natural
extension for negative energies of the expression of the
Lyapunov exponent in terms of the transmission coefficient
for positive energies. On the other hand the Lyapunov expo-
nent and the DOS for the negative spectrum of the wire in
the thermodynamic limit can be straightforwardly obtained
by using the functional equation formalism—which is valid
for the whole spectrum—with the proper canonical functions
given by Egs. (14)—(16). Then one can speak of extended
bound states whenever A=0 and of exponentially localized
bound states otherwise. From an academic viewpoint an ex-
tended bound state must be understood as an electronic state
which decreases exponentially outside the system and that
has essentially the same probability to be bound at any site of
the chain. In other words, think of a bound state located at a
given potential from which the state will decrease exponen-
tially. Now imagine that this pattern repeats itself at every
potential unit with a roughly constant amplitude, then we
have an extended bound state. If on the contrary this pattern
is only appreciable in a certain finite region of potential units
then we can speak of a localized bound state.

TABLE I. Summary of features of the different types of isolated resonances in the spectrum of a disor-

dered Poschl-Teller wire.

States with

Resonance Critical Exponents IPR Envelope A<N~!
A~ (e-€)% IPR(e.) # N~ _
Commuting Fluctuating VN
gle)~go+(e—€,) plateau
le—€|”
\e)
le-€.| - =
CBE IPR(e.)=N Flat VN
0
g
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FIG. 16. (Color online) DOS and Lyapunov exponent (black)
for binary chains. (a) V;=-0.5, V,=-3.399309 with equal concen-
trations. The CBE extended state occurs at €,=—0.297183. (b) «,
=a, V,=-3.1, d*=4.5/a;, d¥=4/a; and a,=2a, V,=-2.5, d&
=5.5/a,, a’I; =4.5/ a, with equal concentrations. The commuting ex-
tended bound state is located at €.=—0.314670. The negative part of
the abscissa axis corresponds to —7/ a.

Extended bound states can generally be found using the
same reasoning as for the positive spectrum. For example,
imposing the condition W;,;=+W; for all sites of the chain
one can find the particular form the transmission matrices for
negative energies must adopt to generate an extended state

NEI e
M‘( a(n)

—a(n)

il+a(77))’ a(n) € R. (36)

Imposing the proper equations to all species included in the
chain one is led to the conclusion that this kind of extended
bound states can only exist if all potential wells are symmet-
ric (df:dj-‘:dj), and in this case the following conditions
must be satisfied:

1
g+ 3l e fEM=0. V) ()

in terms of g and f(7) defined in Egs. (6) and (7). And it
readily follows from Eq. (36) that an energy satisfying these
requirements is a common band-edge of the negative spec-
trum of the species. Therefore CBE extended bound states
can be obtained, as one can see in Fig. 16(a).

Extended bound states can also exist at other type of com-
muting energies (not necessarily common band edges) that
belong to the permitted spectrum of all species of the wire.
For negative energies the commutator reads

F(-1n) H(n))

_H(-7) Fln) (38)

[MI’MZ:I = (

where
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F(7) = 2q,g, sinh[ 9(d} — d5 - d¥ + d5)], (39)

H() == e Mg (= me 400 — f (e )]

+ e MAG [fy(= e ) - f(perdae)]

(40)

Commuting extended bound states can be found for a really
wide range of the parameters of the potentials as long as the
asymmetry of the species is the same df —dt=d5—d5 since in
this case F(7) is identically zero and the only requirements
to have a commuting energy are H(7)=0 and the condition
of belonging to the permitted spectrum of both species,
which can readily be obtained from the trace of the transmis-
sion matrix. An example is shown in Fig. 16(b).

A particular case that deserves a comment is the compo-
sition of wells for which b, defined in Eq. (3), is a half-
integer (the case of integer b corresponds to the resonant
well which will be treated in the next section). Let us re-
member that the dimensionless amplitude of the well can be
written as V=—b(b—1). We already know from Sec. II that
the bound states of a well with a half-integer b correspond to
half-integer values of 7/a. It can easily be checked that the
matrix of such a well at the eigenenergies reads

0 4o d*=d")
M=
Te (dR-d") 0

These matrices trivially commute with each other provided
the asymmetry is the same for all wells. Therefore a chain
including different wells with different half-integer values of
b, and values for a,, such that the potentials exhibit common
levels will show extended bound states precisely at those
energy levels, as can be seen in Fig. 17(a).

Even when b is not a half-integer, due to the structure of
the discrete spectrum of the Poschl-Teller (Fig. 2) is easy to
choose a couple of different wells with common bound
states, however, in this case the matrix of a general well for
its eigenenergies reads

f(= p)emd+d") g pmnld"=d")
M =
T =" 0

(41)

(42)

and these matrices do not commute. Therefore the composi-
tion of wells with common bound states but with non half-
integer (nor integer) values of b will not exhibit extended
bound states at the common eigenenergies. Nevertheless
since in this case all wells share common levels, a band of
bound states is formed around these energies in the thermo-
dynamic limit and we have checked that within these bands a
commuting extended bound state always exists and it can be
located quite near the common energy depending on the
width of the band, as can be seen in Fig. 17(b). It must be
emphasized that the behavior of A and DOS around the dif-
ferent types of negative critical energies is the same as
for their counterparts in the positive spectrum described in
Table I.
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FIG. 17. (Color online) DOS and Lyapunov exponent (black)
for binary chains including wells in equal concentrations with pa-
rameters (a) b;=3/2, b,=5/2 with a common eigenstate for 7/«
=0.5 and (b) V;=-2.8125 and V,=-7.3125 showing common
eigenstates at 7/a=0.25,1.25. The commuting extended bound
states are located at €,=—0.217142 and €.=-1.25. Notice the
change in the vertical scale at —0.75 in the (b) example. The nega-
tive part of the abscissa axis represents —7/ a.

D. Including resonant wells in the disordered chain

Let us finally considered the interesting case of including
resonant potential wells in the disordered system. The reso-
nant wells correspond to potentials with an integer value of b
greater than 1. From Sec. II we know that the transmission
for this kind of potentials is identically 1 for all energies. The
transmission matrix (9) for a resonant well for positive ener-
gies naturally reduces to

gi[<p+k(dL+dR)] 0
M= 0 o-ilerk(disd®)] |7 (43)

which is the transmission matrix of a zero potential. The
resonant well for positive energies behaves as a zero poten-
tial with an effective length Ley(k)=¢/k+(d®+d") that de-
pends on the energy. This definition of the effective length
only makes sense if it appears multiplied by the energy, since
otherwise a divergence appears as k goes to zero. A handy
expression can be obtained for the effective length. For a
resonant well described by parameters {dfy,d’;, @,,b,} it can
be proved by induction using the properties of the Gamma
function that the following expression holds:
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R R
ad+ a
kLeffy(k) = GLeffy(E) = EM +(by,— D

(ar)/a)
byl
-2 2 arctan(

J=1

: ) (44)
Jlaja))”
where e=k/« and « being the reference value for the pa-
rameters {ay}. Let us briefly analyse the appearance of criti-
cal energies for a binary chain in which one of the potentials
is a resonant well. Since for the resonant well w,=0 the
conditions of positive commuting resonance reduce simply
to

Sin[kLeffy(k)] = 0, (45)

plus the condition of belonging to the permitted spectrum of
the other species and without further restrictions on the pa-
rameters of the second potential. In the case of CBE reso-
nances, since the resonant well has no gaps in its positive
spectrum it can easily be checked that the conditions (30)
reduce also to Eq. (45) together with the energy being an
appropriate band-edge of the spectrum of the second species.
Therefore in a binary chain with one of the species being a
resonant well, transmission resonances can only lie among
the set of energies satisfying €L (€)=n, n e Z. For the
negative spectrum one similarly obtains that extended bound
states must fulfill the equation

eI = ) =MD () =0, (46)

where f,(7) for a resonant well can be expressed as

o nla,—j
fHm=1l ——. (47)
=1 May+]

If such an energy lies in the permitted spectrum of the other
species then a commuting extended bound state emerges
without further requirements on the parameters of the second
species. On the other hand if the energy coincides with a
band edge of the negative spectrum of the second species,
which must be a symmetric well, then we have a CBE ex-
tended bound state.

Now let us consider a disordered chain entirely composed
of different resonant wells. Regarding the negative spectrum
of the chain, the matrix of a resonant well for its eigenlevels
is the same as for the case of half-integer b discussed previ-
ously [Eq. (41)]. Let us remember that the well host (b,
—1) bound states that correspond to integer values of 7/a.,.
Therefore the common eigenlevels of all resonant wells, ac-
cording to parameters {e,}, will arise as extended bound
states as long as the asymmetry of all wells is the same. For
positive energies, the disordered chain composed of different
resonant wells behaves as a transparent potential for all en-
ergies: the canonical equation reduces to the canonical equa-
tion for the free particle so the system exhibits a maximum
transmission. The properties of these resonant chains have
been analyzed in detail by the authors in Ref. 39, where the
analytical expression for the DOS is obtained and the toler-
ance of the transmission with the parameters of the potential
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FIG. 18. Optimal representation of the correlation space for two
species as a function of the concentration: if ¢; <0.5 then py, vs ¢y,
if ¢; >0.5 then p,; vs c;. The dashed line corresponds to the com-
pletely random configurations.

as well as the influence of the approximations made to build
the matrix of the Poschl-Teller potential are discussed.

V. WIRES WITH CORRELATED
SUBSTITUTIONAL DISORDER

The Poschl-Teller potential model can be also studied un-
der the effect of correlated substitutional disorder. The model
of short-range correlations proposed has been also applied
successfully by the authors to the delta potential system, and
it is thoroughly described in Refs. 3, 4, and 45. We shall
make here only a brief description. In the completely random
case, the properties of the system are determined by the pa-
rameters of the different atomic species composing the chain
and their concentrations {cy}. One can introduce short-range
correlations in the structure modifying the probability of dif-
ferent atomic clusters to appear in the wire sequence. This
can be done by considering an additional set of probabilities
{pyﬁ} obeying certain equations, where p,z means the prob-
ability for a y atom to be followed or preceded by a 8 atom.
Thus the frequency of appearance of binary atomic clusters
can be altered by these quantities. The probability of finding
at any position the couple —yB-(-By~-) would be ¢ p,z or
equivalently cgpg,. Then in the thermodynamic limit the
physical properties of such a system will depend upon the
parameters of the species, the concentrations, and the prob-
abilities {p,g}. This correlated model naturally includes the
situation when the disorder in the wire is completely random,
that is just defined by the values p,z=cg. In this section only
binary chains will be considered, so let us study in detail the
correlation scheme for this case. Our wire will be determined
by one of the concentrations {c;,c,} and one of the probabili-
ties {pi1.p12.P21-P20), that satisfy the relations p;,+pi,
=py+pr =1 and ¢ pa=cyp,;. One usually takes as configu-
ration parameters ¢;<1 and p;,<min{l,c,/c;}. However,
one can optimize the representation of this configurational
space by choosing the parameters {c;,p;,} when ¢; <0.5 and
{c1,pa1} when ¢;>0.5, so that the configuration space is ex-
panded and the spatial points can be better differentiated, as
shown in Fig. 18. Therefore, for a given concentration dif-
ferent values for p,(p,;) can be chosen, and only one of
them corresponds to the completely random chain. When the
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FIG. 19. DOS for correlated configurations of a binary chain
with parameters V;=-2.5 and V,=2 with concentration ¢;=0.4.

configuration of the binary chain lies on the dashed lines of
Fig. 18, we have a completely random chain whereas if the
configuration lies anywhere else we have a correlated chain.

A. Effects of the correlations in the thermodynamic limit

The limiting distributions of the DOS and the Lyapunov
exponent for the infinite system can be obtained numerically
using the functional equation formalism which in its more
general form accounts for the presence of correlations
through the probabilities {p,g}.***5 The density of states of a
binary chain is altered by the effect of the correlations in a
similar manner as for the delta model.? In Fig. 19 the DOS is
plotted for two limiting correlated situations of a binary
chain with fixed concentrations. The distribution of states
changes from the initial situation in which the probability to
find the cluster —12— is low (p;,=0.1), to the stage when the
atoms of species 1 appear always isolated (p,,=1.0). The
number of available states in certain ranges as well as the
gaps can be changed by tuning p,,, although the concentra-
tions remain fixed. It can also be checked that for the corre-
lated configurations the fractal character of the distribution
persists in different energy intervals.

The effect of the correlations on the electronic localiza-
tion is also similar as for the delta model. The Lyapunov
exponent is globally altered by the correlations in the whole
energy spectrum, although as expected no new extended
states emerge in the thermodynamic limit, as can be seen in
the examples of Fig. 20. The evolution of the Lyapunov ex-
ponent for a fixed concentration with the probability p,
agrees perfectly with the behavior of the inverse participation
ratio calculated by averaging over many finite realizations of
the disordered system. Let us note that the critical energies of
the spectrum corresponding to extended states are present in
all the different correlated regimes. It is also remarkable the
fact that as the correlations change, the value of the
Lyapunov exponent can be strongly decreased for several
energies. These energies for which the localization can be
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IPR

FIG. 20. (Color online) Evolution of the Lyapunov exponent (a)
and the IPR (b) with the correlations for a binary chain with param-
eters Vi=-1, V,=1, ¢;=0.5. Notice the presence of a critical energy
at €,=1.095. For each configuration the IPR has been obtained by
averaging 100 sequences of a 1000-atom array.

severely weakened are related to resonances of different
atomic clusters whose concentration is modified by the cor-
relations. For example, in a binary chain composed of a well
(1) and a barrier (2), for the case p;,=1.0 the wells are com-
pletely isolated so that they always appear in the cluster
barrier-well-barrier. Therefore it seems reasonable that in this
correlated situation the energies of transmission resonances
of the latter cluster will tend to be more delocalized than for
any other value of p,. This effect is more noticeable in this
model than for the delta model, since in that case the atomic
potentials lack an internal structure. We have also checked
that the effect of the correlations is similar when more spe-
cies are included in the disordered wire.

B. Effects of the correlations on finite wires

Although not truly extended states are included in the
spectrum, the effects of these short-range correlations upon
finite samples of the wires are able to improve noticeably the
electronic transport, much the same way as for the delta
model.* In Fig. 21 several transmission patterns for a finite
binary chain composed of 1000 atoms are plotted. In the
correlated configurations the transmission is improved with
respect to the completely random situation. Let us notice that
the improvement can take place in different energy ranges
and it is not restricted to the vicinity of the critical energies.
As expected, the enhancement of transmission occurs in the
whole configurational space of the binary wire as revealed by
the transmission efficiency

1 (e
Teff= —f T(k)dk (48)
ky—kyJy,

The minimum intensity of the transport is found around the
completely random lines whereas the correlated configura-
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FIG. 21. Transmission probability vs energy for a 1000-atom
binary disordered chain in different correlation regimes. The circu-
lar point inside the insets marks the configuration on the configura-
tional space. Only one realization of the disorder has been consid-
ered for each case. Parameters: V,=-2.5, V,=5, ¢;=0.5 and
correlation from top to bottom p;,=0.5,0.1,0.9.

tions perform always better (Fig. 22). The patterns of the
enhancement are similar to those of the 6 model although it
must be emphasized that the transmission efficiency may
adopt a strong asymmetric distribution over the configuration
space, depending on the species amplitudes. This asymmetry
is absolutely negligible in the 6 model since the & potential
from the point of view of the transmission behaves essen-
tially in the same way independently of the sign of the cou-
pling. However provided the atomic potentials are nonpunc-
tual and have an internal structure, this asymmetry may be
quite noticeable since a potential well performs a better
transmission than a potential barrier, and the same thing hap-
pens comparing barriers of different heights. Therefore the
transmission efficiency naturally registers a global lift or a
global decrease depending on whether the concentration of
the species that is more tolerant with the transmission pro-
cess is larger or less than 0.5.

Then the enhancement of transmission in finite wires is a
fact. And the reason is that the short-range correlations
modify the localization in the thermodynamic limit in such a
way that the fluctuations of the Lyapunov exponent for a
finite system cause an important increase of the number of
states whose localization length (£) is larger than the system
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FIG. 22. (Color online) Transmission efficiency over correlation
space for binary chains: (a) V,=-2.5, V,=5 and integration interval
[0, 3.7], (b) V,=2.5, V,=35 and integration interval [0, 3].

size (N). This seems to be a universal effect of this sort of
correlations independently of the atomic model. Additionally,
once the compositional species and the concentrations of the
wire are fixed, the correlations can be chosen to localize to a
certain extent the improvement of transmission in a particu-
lar energy range.

As the length of the wire grows the effects of the corre-
lations disappear; the completely random chain displays the
fastest decay of T, with the size of the system whereas the
correlated situations show higher efficiencies for all lengths,
as can be seen in Fig. 23. The relative differences AT
=T.s—T.4(R) as a function of the length, where (R) means
the completely random value, reveals that the effect of the
correlations is generally maximized for short chains. From
the analysis made on the Poschl-Teller wires and the delta
wires, it must be remarked that the effects described of this
type of correlated disorder are essentially independent of the
potential model.

VI. FINAL DISCUSSION

In this chapter the Poschl-Teller potential has been con-
sidered to build one-dimensional quantum wires. The prop-
erties of the whole spectrum (positive and negative energies)
of the disordered wire in the thermodynamic limit have been
thoroughly studied using the canonical equation and the
functional equation formalism.

Fractality in certain energy ranges of the density of states
has manifested itself as a property of the spectra of these
disordered systems, and it seems to be a characteristic feature
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FIG. 23. (Color online) Transmission efficiency vs length for
different configurations of a 1000-atom binary chain with param-
eters Vi=—1, V,=1, ¢;=04, integration interval [0, 1.75]. (R)
marks the completely random situation. The inset shows the relative
differences AT g=Terr— Tori(R).

of one-dimensional disordered systems independently of the
potential model. Its relation with localization and its depen-
dence upon the nature of the distributions that define the
disorder is currently under investigation.

The analysis of localization has also revealed the exis-
tence of two types of isolated extended states: CBE reso-
nances and commuting resonances, exhibiting very dissimi-
lar characteristics: different critical exponents for N and
DOS, different behavior of the IPR and different aspect of
the envelope of the state. However, they share some common
features, such as the fact that the number of states near the
resonance with a localization length larger than the system
size scales as the square root of the length of the chain. One
can wonder whether the properties of such critical energies
are dependent upon the particular potential model considered
to build the disordered chain or on the contrary Table I
means a universal classification scheme. As we already know
the features of the delta potential model also fits in the given
table.*> But the most interesting thing is that all extended
states found are located at commuting energies, ensuring the
commutativity of the transmission matrices composing the
array. Then one can conjecture that all extended states in 1D
systems may be located at commuting-energies of the spec-
trum. As we have seen, this common origin is compatible
with very different features of the extended states, and if it
were true it would mean to have a very simple condition to
find all possible resonances that can occur in a one-
dimensional disordered system. Of course, we must not for-
get that the additional condition of belonging to the permit-
ted spectrum of all species of the chain has also to be
satisfied by the commuting energy. In order to support this
conjecture let us see that even when short-range correlations
are included in the disorder, the extended states occur at
commuting energies. Let us consider, for example, the fa-
mous binary random-dimer model. One of the atomic species
appears always in pairs (dimers), then in general the matrix
of the dimer reads

104201-17



ALBERTO RODRIGUEZ AND JOSE M. CERVERO
(a ﬁ)(a ,8) <a2+|a|2—l
B o' J\B o - 28" Re(a)

where we have used |a|>~|B|?=1. Then, due to the dimeric
structure of the matrix it is possible that new resonant states
emerge in the spectrum at energies for which the dimer ma-
trix commutes with the matrix of the other species. The sim-
plest case corresponds to the situation when the dimer matrix
reduces to a multiple of the identity matrix, and that occurs
whenever Re(a)=0 as can be seen in the above expression.
Then the only left condition to have a resonance is that the
energy belongs to the permitted spectrum of the nondimer-
ized species. This is the most simple way to write the con-
dition of the dimer resonance and it is independent of the
potential model. Moreover, other commuting energies can
exist for which the dimer matrix does not reduce to the iden-
tity, since it suffices that the dimer matrix (Mgje) can be
written as a combination of the identity and powers of the

2B Re(a) )
(@) +]a*-1)"

(49)

matrix of the nondimerized species (M),

Mimer = aol + 2 anMn- (50)

n>0

The same reasoning can also be applied to other types of
impurities that can be included inside a periodic chain. In
fact, it has been found that if the impurities are symmetric
then extended states can exist at energies for which the im-
purity matrix reduces to a linear combination of the identity
and the matrix of the other species of the chain,>° hence
they are commuting resonances. Therefore, this kind of
short-range correlations are able to include new extended
states in the spectrum because there exist energies for which
the matrices of the new compositional units (i.e., the dimer
matrix or the impurity matrix and the matrices of the other
species) can commute. Some of these commuting energies
will not be commuting energies of the individual matrices of
the system and that is the reason why these extended states
do not exist in the uncorrelated model. Let us consider an-
other correlated model supporting extended states, for ex-
ample the simplest case of the diluted Anderson model.®>2 It
consists of a one-dimensional tight-binding Hamiltonian for
which the self-energies &; of the odd sites are random,
whereas they are all equal for the even sites that can be set to
zero without loss of generality. This model is known to sup-
port an extended state for E=0. Let us see that it is a com-
muting resonance. The discrete transfer matrix (i.e., the ma-
trix defined from the canonical equation) for the diagonal
tight-binding model reads

B E-¢g; -1
Pj"( 1 0)' 5D

We can define a new compositional unit in the system includ-
ing an odd and an even site, which can be described by the
product of the individual matrices
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E*-gE-1 &-E
M, = (52)
E -1

and the commutator of these compositional units can be
readily calculated

(e;—&)E 0 )

[Mj,Mi] = ((8_,' _ 8,-)E2 (g;— sj)E (53)

that obviously vanishes for E=0 independently of the values
of the site energies. It can be easily seen that E=0 belongs to
the permitted spectrum of the periodic chain of matrices (52)
for all values of g;, and therefore a commuting-resonance
emerges at that energy whatever the distribution of the site
energies for the odd sites is. It can be shown that the ex-
tended states appearing in more complex configurations of
the diluted Anderson model are also commuting resonances.
It must then be clear that not all kind of short-range correla-
tions will be able to include new extended states in the spec-
trum in the thermodynamic limit. The correlations must be
such that new compositional units can be defined in the sys-
tem, so that new commuting energies for the matrices of the
new compositional units can exist. This reasoning explains
why the model of correlations proposed in this work is not
able to include new extended states, since the probability of
appearance of certain binary clusters is modified but the
compositional units of the system remain the same as for the
completely random case, and they are the individual matrices
of the atomic species. Then, although the localization and the
transport properties can be modified by the correlations, as it
has been shown, however, no additional truly extended states
emerge in the spectrum. And, what about long-range corre-
lations? Certainly the situation is quite more complex with
long-range correlations, however, at the present time, to our
knowledge, there does not exist in the literature any proof
that long-range correlations are able to include in the spec-
trum of disordered systems strictly extended states, that is
with a divergent localization length. Only numerical
proofs!>1657 and also analytical calculations up to fourth or-
der in perturbation theory!”'? exist that have proved that
qualitatively a MIT happens due to long-range correlations,
and it has been experimentally checked.”??* However, the
states of the “delocalized” phase are strictly speaking still
exponentially localized. Hence, it seems that a large variety
of models existing so far in the literature are compatible with
the conjecture that all extended states in the thermodynamic
limit of one-dimensional disordered structures occur at com-
muting energies of the transmission matrices of the compo-
sitional units of the system. Nevertheless, further research is
needed to confirm the validity of such a hypothesis.

Among all the interesting features exhibited by the
Poschl-Teller model, such as the presence of isolated ex-
tended states in uncorrelated disordered sequences in which
the parameters of the different species satisfy certain proper-
ties, one of them deserves a special remark: the building of
random resonant chains with a continuum of delocalized
states. The composition of resonant Poschl-Teller wells be-
haves as a transparent potential for all positive energies, as
described in detail in Ref. 39.
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Finally, the analysis of a model of short-range correlations
previously studied by the authors in other potentials, has re-
vealed that the physical effects of this type of correlated
disorder are the same independently of the potential model.
The correlations are able to alter the distribution of states and
the localization length globally in the thermodynamic limit
although no new critical energies occur. Nevertheless for a
finite system the number of states with a localization length
larger than the system size increases dramatically in the cor-
related configurations with respect to the completely random
situation, thus yielding a noticeable improvement of the
transmission efficiency for the correlated disordered se-
quences.

PHYSICAL REVIEW B 74, 104201 (2006)

The disordered Poschl-Teller chains show an ensemble of
very interesting properties and also an unexpected behavior
not anticipated from a disordered system. From our point of
view, it is important to build new models of one-dimensional
disordered systems using other potentials, in order to analyze
their properties and decide on the validity of our conjectures.

ACKNOWLEDGMENTS

This research has been partially supported by DGICYT
under Contracts Nos. BFM2002-02609 and FIS2005-01375.

*Electronic address: argon@usal.es

'P. W. Anderson, Phys. Rev. 109, 1492 (1958).

2A. Sanchez, E. Maci4, and F. Dominguez-Adame, Phys. Rev. B
49, 147 (1994).

3J. M. Cerveré6 and A. Rodriguez, Eur. Phys. J. B 32, 537 (2003).

4J. M. Cerver6 and A. Rodriguez, Eur. Phys. J. B 43, 543 (2005).

SH. L. Wu, W. Goff, and P. Phillips, Phys. Rev. B 45, 1623 (1992).

SM. Hilke, J. Phys. A 30, L367 (1997).

7]. C. Flores, J. Phys.: Condens. Matter 1, 8471 (1989).

8D, H. Dunlap, H.-L. Wu, and P. W. Phillips, Phys. Rev. Lett. 65,
88 (1990).

°J. C. Flores and M. Hilke, J. Phys. A 26, L1255 (1993).

10E M. Izrailev, T. Kottos, and G. P. Tsironis, J. Phys.: Condens.
Matter 8, 2823 (1996).

I'E, Diez, A. Sdnchez, and F. Dominguez-Adame, Phys. Rev. B 50,
14359 (1994).

I2T. Sedrakyan, Phys. Rev. B 69, 085109 (2004).

3W. Zhang and S. E. Ulloa, Phys. Rev. B 69, 153203 (2004).

“F. A. B. F. de Moura, M. N. B. Santos, U. L. Fulco, M. L. Lyra,
E. Lazo, and M. E. Onell, Eur. Phys. J. B 36, 81 (2003).

ISE. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735
(1998).

16, Shima, T. Nomura, and T. Nakayama, Phys. Rev. B 70,
075116 (2004).

7F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062
(1999).

I8F. M. Izrailev, A. A. Krokhin, and S. E. Ulloa, Phys. Rev. B 63,
041102(R) (2001).

19L. Tessieri, J. Phys. A 35, 9585 (2002).

20F. A. B. F. de Moura and M. L. Lyra, Physica A 266, 465 (1999).

2IF. M. Izrailev and N. M. Makarov, J. Phys. A 38, 10613 (2005).

22V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G. B. Parravi-
cini, F. Dominguez-Adame, and R. Gomez-Alcald, Phys. Rev.
Lett. 82, 2159 (1999).

23 A. Krokhin, F. Izrailev, U. Kuhl, H. J. Stéckmann, and S. E.
Ulloa, Physica E (Amsterdam) 13, 695 (2002).

2y, Kuhl, F. Izrailev, A. Krokhin, and H. J. Stockmann, Appl.
Phys. Lett. 77, 633 (2000).

BE, Dominguez-Adame, V. A. Malyshev, F. A. B. F. de Moura, and
M. L. Lyra, Phys. Rev. Lett. 91, 197402 (2003).

2F. A. B. F. de Moura, M. L. Lyra, F. Dominguez-Adame, and V.
A. Malyshev, Phys. Rev. B 71, 104303 (2005).

2T A. Rodriguez, V. A. Malyshev, G. Sierra, M. A. Martin-Delgado,
J. Rodriguez-Laguna, and F. Dominguez-Adame, Phys. Rev.
Lett. 90, 027404 (2003).

28 A. V. Malyshev, V. A. Malyshev, and F. Dominguez-Adame,
Phys. Rev. B 70, 172202 (2004).

F. A. B. F. de Moura, A. V. Malyshev, M. L. Lyra, V. A. Maly-
shev, and F. Dominguez-Adame, Phys. Rev. B 71, 174203
(2005).

3P, A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287
(1985).

3L, 1. Deych, M. V. Erementchouk, and A. A. Lisyansky, Phys.
Rev. Lett. 90, 126601 (2003).

L. I. Deych, A. A. Lisyansky, and B. L. Altshuler, Phys. Rev.
Lett. 84, 2678 (2000).

3L. 1. Deych, M. V. Erementchouk, and A. A. Lisyansky, Phys.
Rev. B 67, 024205 (2003).

34T, Schulte, S. Drenkelforth, J. Kruse, W. Ertmer, J. Arlt, K. Sacha,
J. Zakrzewski, and M. Lewenstein, Phys. Rev. Lett. 95, 170411
(2005).

3]. E. Lye, L. Fallani, M. Modugno, D. S. Wiersma, C. Fort, and
M. Inguscio, Phys. Rev. Lett. 95, 070401 (2005).

3R, Damski, J. Zakrzewski, L. Santos, P. Zoller, and M. Lewen-
stein, Phys. Rev. Lett. 91, 080403 (2003).

3TH. Gimperlein, S. Wessel, J. Schmiedmayer, and L. Santos, Phys.
Rev. Lett. 95, 170401 (2005).

3U. Gavish and Y. Castin, Phys. Rev. Lett. 95, 020401 (2005).

A, Rodriguez and J. M. Cerveré, Phys. Rev. B 72, 193312
(2005).

408, Fliigge, Practical Quantum Mechanics (Springer-Verlag, Ber-
lin, 1970).

41 A, Khare and U. P. Sukhatme, J. Phys. A 21, L501 (1988).

42]. W. Dabrowska, A. Khare, and U. P. Sukhatme, J. Phys. A 21,
L195 (1983).

43]. M Cerver6 and A. Rodriguez, Phys. Rev. A 70, 052705 (2004).

4 A. Rodriguez, quant-ph/0603133 (unpublished).

S A. Rodriguez, Ph.D. thesis, Universidad de Salamanca, Sala-
manca, 2005, http://www.usal.es/fnl/argon/downloads/
Thesis.pdf

4] M Cerver6 and A. Rodriguez, Eur. Phys. J. B 30, 239 (2002).

47T A. Rodriguez and J. M. Cerveré (unpublished).

1. Gémez, F. Dominguez-Adame, and E. Diez, Physica B 324,
235 (2002).

104201-19



ALBERTO RODRIGUEZ AND JOSE M. CERVERO

49M. Hilke and J. C. Flores, Phys. Rev. B 55, 10625 (1997).

S0M. Y. Azbel, Phys. Rev. B 28, 4106 (1983).

SUA. Bovier, J. Phys. A 25, 1021 (1992).

2F. Dominguez-Adame, I. Gémez, A. Avakyan, D. Sedrakyan, and
A. Sedrakyan, Phys. Status Solidi B 221, 633 (2000).

SBT.C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. 1.
Shraiman, Phys. Rev. A 33, 1141 (1986).

>4E. Macid and F. Dominguez-Adame, Electrons, Phonons and Ex-

PHYSICAL REVIEW B 74, 104201 (2006)

citons in Low Dimensional Aperiodic Systems (Editorial Com-
plutense, Madrid, 2000).

L. Arnold, Random Dynamical Systems (Springer Verlag, Berlin,
1998).

S6x, Q. Huang, R. W. Peng, F. Qiu, S. S. Jiang, and A. Hu, Eur.
Phys. J. B 23, 275 (2001).

578. Russ, J. W. Kantelhardt, A. Bunde, and S. Havlin, Phys. Rev. B
64, 134209 (2001).

104201-20



