
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 9819–9824 doi:10.1088/1751-8113/40/32/007

Factorization of a class of almost linear second-order
differential equations
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Abstract
A general type of almost linear second-order differential equations, which are
directly related to several interesting physical problems, is characterized. The
solutions of these equations are obtained using the factorization technique,
and their non-autonomous invariants are also found by means of scale
transformations.

PACS numbers: 02.30.Hq, 02.90.+p

1. Introduction

From previous works [1–3], we know that certain nonlinear second-order ordinary differential
equations (ODE) can be factorized under some conditions that coincide with those of
integrability obtained from a Painlevé analysis. These kinds of equations frequently appear
when looking for travelling wave solutions of interesting nonlinear physical equations such
as Korteweg–de Vries–Burgers [1, 2], Kadomtsev–Petviashvili [1], and Benjamin–Bona–
Mahony equations [3]. We also know that the factorizations are directly related to first
integrals of the equation that are a kind of Bohlin’s first integrals [1, 4].

In this work we deal with a class of second-order differential equations with variable
coefficients that will be called ‘almost linear’ (AL). In general, there are no standard techniques
to solve this kind of nonlinear equations. Here, our aim is to solve them by using the
factorization technique appropriately adapted. Then, we want to find the first integrals of this
class of equations, which are related to the factors entering the factorization. We note that this
class includes the generalized Emden–Fowler equation, with a second-order nonlinearity in
the dependent variable [5–8], which appears in various fields of physics.

In section 2, we introduce AL second-order ODE which will be transformed into canonical
forms. Then, in section 3, one type of the canonical equations is factorized in a standard way.
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In section 4, we will study the factorization of the AL second-order ODE of section 2. In
principle it is difficult to factorize them directly, but we can achieve it by using the factorization
of their canonical forms. We will consider again a scale transformation to get the invariants
(first integrals) of these general equations in section 5. Finally, in the last section we will draw
some conclusions.

2. The general form of the almost linear second-order ordinary differential equation

Let us consider the second-order ODE with variable coefficients of the form

d2Y (t)

dt2
+ F1(t)

dY (t)

dt
+ F2(t)Y

2(t) + F3(t)Y (t) = 0, (2.1)

where the coefficients F1(t), F2(t) �= 0 and F3(t) are functions of the independent variable t.
This equation will be called in the following ‘almost linear’ second-order ODE because it is
linear, except for the presence of the term in Y 2(t). Equation (2.1) can be set in a canonical
form by introducing the following scale transformation (see [9]):

Y (t) = λ(t)(W(z) − b0) dz = φ(t) dt (2.2)

that changes (2.1) into

d2W(z)

dz2
+

1

φ

(
1

φ

dφ

dt
+

2

λ

dλ

dt
+ F1

)
dW(z)

dz
+ F2

λ

φ2
W(z)2

+
1

φ2

(
1

λ

d2λ

dt2
+

F1

λ

dλ

dt
− 2b0F2λ + F3

)
W(z)

− b0

φ2

(
1

λ

d2λ

dt2
+

F1

λ

dλ

dt
− b0F2λ + F3

)
= 0, (2.3)

where λ(t), φ(t) and b0 should be selected in order to write (2.3) as one of the Painlevé
classifications of second-order differential equations [10]. As is well known [9], there are two
independent canonical forms for equation (2.3)

d2W(z)

dz2
− 6W 2(z) + 6b2

0 = 0 (2.4)

and

d2W(z)

dz2
− 6W 2(z) − z = 0. (2.5)

Equation (2.5) is the first Painlevé transcendent which is not factorizable. Therefore, in the
following we are only interested in the equations of the form (2.1) that can be transformed
into (2.4). By comparison of (2.3) and (2.4), λ(t) and φ(t) must be defined as

λ(t) = F
−1/5
2 (t) e− 2

5

∫
F1(t)dt φ(t)2 = −λ(t)F2(t)

6
(2.6)

and the functions F1, F2 and F3 should satisfy the relation

F3(t) = 2b0F2(t)λ(t) − 1

λ(t)

d2λ(t)

dt2
− F1(t)

λ(t)

dλ(t)

dt
. (2.7)

In conclusion, we have shown that (2.1) can be transformed into the canonical equation (2.4)
if and only if the functions F1, F2 and F3 are related through condition (2.7).

Provided that condition (2.7) is fulfilled, the reduction of (2.1) to the canonical form
(2.4) presents several advantages that we shall explore in the following. More precisely, the
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canonical form (2.4) is rather easy to factorize. This factorization allows us to perform the
inverse of the scale transformation (2.2) to obtain a factorization for equation (2.1) which, in
principle, is quite difficult to factorize directly.

3. Factorization of the canonical equation

Let us consider equation (2.4) with constant coefficients, it can be factorized in the form(
d

dz
− f2(W)

) (
d

dz
− f1(W)

)
W = 0, (3.1)

where f1(W) and f2(W) satisfy the following relations:

f1f2W + 6W 2 − 6b2
0 = 0 (3.2)

f2 = −W
∂f1

∂W
− f1. (3.3)

After substituting (3.3) into (3.2) we get for f1 the consistency equation

Wf1
∂(f1)

∂W
+ f 2

1 − 6W + 6
b2

0

W
= 0, (3.4)

whose solutions are

f1(W) = ±
√

4W − 12
b2

0

W
− c

W 2
, (3.5)

where c is an integration constant. Now, using these functions in (3.1) we obtain

dW

dz
∓

√
4W 3 − 12b2

0W − c = 0. (3.6)

It is easy to see [11] that the solutions of (3.6) are given in terms of elliptic functions,

W(z) = ℘(z + z0; g2, g3), (3.7)

where ℘(z + z0; g2, g3) is the Weierstrass function, z0 is a half-period, and the invariants are

g2 = 12b2
0 g3 = c. (3.8)

The degenerate cases in which the discriminant � = g3
2 − 27g2

3 = 27
(
8b3

0 − c
)(

8b3
0 + c

)
of

the Weierstrass function is zero [11, 12] supply the particular solutions:

• c = −8b3
0

W(z) = −b0 + 3b0 cos−2[
√

3b0(z + z0)] (3.9)

• c = 8b3
0

W(z) = b0 − 3b0 cosh−2[
√

3b0(z + z0)]. (3.10)

Now, we can use the above results to find the factorization and solutions of the AL
second-order ODE with variable coefficients (2.1) by using the transformation (2.2).
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4. Factorization of the almost linear second-order ODE

If equation (2.1) admits a general factorization of the form(
d

dt
− R2(Y, t)

)(
d

dt
− R1(Y, t)

)
Y = 0 (4.1)

then, R1(Y, t) and R2(Y, t) should satisfy the following consistency conditions:

R1(Y, t)R2(Y, t) − ∂R1(Y, t)

∂t
− F2(t)Y − F3(t) = 0 (4.2)

R1(Y, t) + R2(Y, t) + Y
∂R1(Y, t)

∂Y
+ F1(t) = 0. (4.3)

The elimination of R2(Y, t) between (4.2) and (4.3) provides for R1(Y, t) the nonlinear partial
differential equation

∂R1(Y, t)

∂t
+ YR1(Y, t)

∂R1(Y, t)

∂Y
+ R1(Y, t)2 + F1(t)R1(Y, t) + F2(t)Y + F3(t) = 0. (4.4)

Obviously, it is very difficult to determine R1 from this equation. Nevertheless, we can
find R1 and R2 by using the factorization of the canonical equation mentioned above (in
section 3). We consider the first-order ODE[

d

dz
− f1(W)

]
W(z) = 0, (4.5)

where f1 was given by (3.5) and W(z) can be written from (2.2) as

W(z) = b0 +
Y (t)

λ(t)
dz = φ(t) dt. (4.6)

Then, substituting (4.6) into (4.5) and using the form of φ(t) given by (2.6), we get another
first-order ODE but in terms of Y and t,[

d

dt
−

(
1

λ

dλ

dt
+

√
F2

6
Q(Y, t)

)]
Y (t) = 0, (4.7)

where

Q(Y, t) = −4Y − 12b0λ +
(
c + 8b3

0

) λ3

Y 2
. (4.8)

Now, comparing (4.7) with (4.1), we have

R1(Y, t) = 1

λ

dλ

dt
+

√
F2

6
Q(Y, t) (4.9)

and from (4.3) we have also

R2(Y, t) = −F1 − 1

λ

dλ

dt
+ (Y + 2b0λ)

√
6F2

Q(Y, t)
. (4.10)

It is a trivial exercise to prove that (4.9) and (4.10) satisfy (4.2) and (4.3) if and only if F3

satisfy (2.7). Therefore, we can say that equation (2.1) can be factorized as shown by (4.1),
just in the case in which it can be transformed into the canonical form (2.4).
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5. Invariants of the canonical and the almost linear second-order ODE

An additional bonus of transformation (2.2) is that it provides us with invariants for
equation (2.1) by identifying the invariants of (2.4). Actually, (3.6) can be trivially rewritten
as

−c =
(

dW

dz

)2

− (
4W 3 − 12b2

0W
)

(5.1)

and easily factorized as the product

−c =
(

dW(z)

dz
− H(W)

) (
dW(z)

dz
+ H(W)

)
, (5.2)

where

H(W) =
√

4W 3 − 12b2
0W. (5.3)

Equation (5.2) can also be expressed as

−c = I1I2, (5.4)

where I1, I2 are invariants depending also on the independent variable z, related to the Bohlin’s
first integrals [1, 4], defined by

I1 =
(

dW

dz
− H(W)

)
exp

{∫ [
6
(
W(z)2 − b2

0

)
H(W)

]
dz

}
(5.5)

and

I2 =
(

dW

dz
+ H(W)

)
exp

{∫ [
−6

(
W(z)2 − b2

0

)
H(W)

]
dz

}
. (5.6)

It is a rather easy task to check that, with these definitions I1 and I2 are constants of motion
for (2.4), i.e., dIj /dz = 0, j = 1, 2.

These invariants also give rise, through the scale transformation (2.2), to non-autonomous
invariants of (2.1) in terms of Y and t. Actually, if we perform this transformation in (5.1) and
(5.2), we obtain

I1 =
√

−6

F2λ3

[
dY

dt
− 1

λ

dλ

dt
Y −

√
−F2

6
P

]
exp

{∫ [
(Y 2 + 2b0λY )

√−6F2

P

]
dt

}
(5.7)

I2 =
√

−6

F2λ3

[
dY

dt
− 1

λ

dλ

dt
Y +

√
−F2

6
P

]
exp

{∫ [
−(Y 2 + 2b0λY )

√−6F2

P

]
dt

}
, (5.8)

where

P(Y, t) =
√

4Y 3 + 12b0λY − 8b3
0λ

3. (5.9)

A direct calculation allows us to check again that I1, I2 as defined in (5.7) and (5.8) are
constants of motion for (2.1), dIj /dt = 0, j = 1, 2, if and only if F3 satisfy (2.7).
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6. Conclusions

In this paper, we have factorized both a class of general AL second-order ODE with variable
coefficients and the transformed canonical equation which is a second-order nonlinear ODE
with constant coefficients. We have shown that the relation between these two factorizations
imposes the restriction (2.7) on the variable coefficients of the initial class of equations,
and how they provide us with the solutions of these equations. Then, the non-autonomous
invariants (first integrals related to Bohlin’s first integrals [4]) of these equations that are also
directly related to the factorizations have been obtained by using scale transformations. Both
methods impose the same restriction (2.7) on the coefficients of the equation. This restriction
coincides with that obtained by using the Painlevé criteria of integrability. Finally, we mention
that the results obtained here were checked by the MAPLE symbolic program.
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