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We derive a class of localized solutions of a 2+1 nonlinear Schrödinger (NLS)
equation and study their dynamical properties. The ensuing dynamics of these
configurations is a superposition of a uniform, “center of mass” motion and a
slower, individual motion; as a result, nontrivial scattering between humps may
occur. Spectrally, these solutions correspond to the discrete spectrum of a certain
associated operator, comprised of higher-order meromorphic eigenfunctions.

1. Introduction

In this paper we derive and study the dynamical properties of a class of solutions
of a 2+1-dimensional differential equation with boundary conditions, namely,

iut + uxx + 2u∂x

∫ y

−∞

(
1 − |u|2) dy′ = 0, lim

r→∞ |u|(x, y, t) = 1 (1)

where u(x, y, t) is a complex function, depending on three real variables x, y, t
and r2 ≡ x2 + y2. Note that the reduction to the manifold x = y yields the
nonlinear Schrödinger (NLS) equation and hence Equation (1) generalizes the
latter to the plane. Recall that the NLS equation was formulated in 1968 by
Zakharov [1] as an equation describing dynamics of waves in deep water with
surface tension; a year later Benney and Roskes [2] showed that the derivation
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carried over to finite-depth water. NLS has also been shown to describe pulse
transmission in optical fibers [3], which further underlines the interest of this
equation. The natural issue of generalizing it to 2+1-dimensions was addressed
in the context of shallow water waves by Benney and Roskes [2] and Davey
and Stewartson [4] who wrote down the DS equation, namely iut + uyy +
σuxx + u(|u|2 − m) = 0, σmyy − mxx = −2∂xx|u|2, σ = ±1.

Equation (1) appears naturally as another interesting integrable generalization
of NLS while its ulterior simplicity and potential physical interest makes it a
natural candidate for study. We note that the related equation corresponding to
decaying boundary conditions, viz.

iut + uxx − 2u∂x

∫ y

−∞
dy′|u|2 = 0 (2)

was first brought to attention and proven to be integrable by Fokas [5].
Actually, both (1) and (2) are particular cases of the more general system

my + |u|2 = 0, iut + uxx + 2umx = 0 (3)

corresponding to definite boundary conditions and a given prescription for ∂−1
y .

Equations (3) can be written as the compatibility of a linear pair of operators.
The spectral theory of the associated spatial operator under certain boundary
conditions, has already been described in [6] in connection with the solution
of the Cauchy problem of a certain different nonlinear equation. From this
analysis it follows that for potentials satisfying |u|2 − 1 ∈ L1(R2) no discrete
spectrum exists and only continuous spectrum does. Nevertheless, as we show
here, the operator has also a discrete spectrum, corresponding to potentials that
can be written as u = 1 + ũ where ũ is a regular, weakly decaying function.
These configurations shall be termed the lumps. While both Equations (1)
and (2) are linearizable and the initial value problem solvable by means of
inverse scattering transform method (IST), it is expected that only the former
possesses lump solutions.

With more generality, lump solutions are localized wave configurations that
decay rationally to an asymptotic value and move with uniform velocity. The
basic asymptotic dynamics consists of a uniform motion; in addition, lumps
display no scattering upon interaction, just a parallel shift on the asymptotic
motion. We expect for lumps to play in 2+1 dimensions a similar role to
solitons in 1+1-dimensions and hence that general initial data will evolve for
sufficiently long time into a sum of lumps. In the light of such a fundamental
role as basic building blocks they have been extensively studied in the last
years. They were first found for the Kadomtsev–Petviashvili I (KPI) equation.
The spectral interpretation in terms of a discrete spectrum was clarified in [7]
(see also [8]. For a description of the KP equation and its physical origins see
[9]). Subsequently, lumps have been found in other integrable equations like
Davey–Stewartson II (DSII) (see [10]) and the 2+1-Toda lattice, see [11].
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Surprisingly, the above is far from being an accurate description of the
generic behavior of localized pulses of integrable equations: it turns out that
KPI posses a much richer discrete spectrum corresponding to a class of
localized, real and regular solutions with weak decay at infinity that have,
however, a nontrivial asymptotic dynamics. Even though the simplest of these
solutions has been known for a long time [12] the associated nontrivial
scattering was overlooked by the soliton community up until 1995 [13, 14].
Clarification via spectral analysis and the derivation of the general class of
those solutions was undertaken in [15]. These new, nonstandard lumps were
found to be associated to a new discrete spectrum of the time dependent
Schrödinger operator corresponding to meromorphic eigenfunctions with poles
of higher multiplicity and/or to what we term nonstandard pole divisors,
defined by a relationship between Laurent coefficients (LC) that generalizes
that of [7] and which, in the spirit of the ideas of [15] and [16], are associated
to integer winding numbers. The extension of these ideas and solutions to
DSII equation via spectral analysis of the Dirac operator on the plane has
been considered in [16]. (We also note that both KPI and KPII possess, in
addition, other localized, nondecaying solutions like line solitons. The solution
of the Cauchy problem for KPII in such a background is considered in [17,
18, 19]). An updated and comprehensive account of all these ideas is given
in [20]).

In this paper we perform a related analysis for Equation (1) and show
that there exits a discrete spectrum that encompasses a whole manifold of
smooth, rationally “decaying” lump configurations. We find that they are
associated with higher-order pole meromorphic eigenfunctions of a similar
discrete spectrum. Particular attention is paid to describing the dynamics and
scattering properties of some of these configurations. Lump solutions of the
kind considered here have also been obtained via these direct methods in [21].
Note also that in [22, 23] and [24] it was proven that Equations (1) satisfy
Painleve’s test; in addition some special solutions, like line solitons, lumps and
dromion solutions, were found. The spectral theory of these configurations is to
our knowledge an open problem. The relation with the generalized dispersive
wave equation via Miura transformations was considered in [25].

The organization of the paper is as follows. The associated pair of linearizing
operators is given in Section 2. Section 3 is devoted to obtaining certain
relations that meromorphic eigenfunctions must satisfy to be eigenfunctions of
the Lax pair. In Section 4 we study both lump solutions with standard and
nonstandard dynamics and their properties. In the latter case we find that the
dynamics is a superposition of a uniform “center of mass” motion, and a
individual, lump depending motion, that behaves as |t |q with q < 1 (Actually,
q = 1

2 for the case considered here.). From a dynamical perspective, the latter
is the only nontrivial motion. Frontal collision of lumps can be expected as a
result of which lumps may scatter off in a nontrivial way. We consider here
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the simplest nontrivial cases. A more detailed report of these general lump
solutions will be given elsewhere.

2. Linear problem

As we have already pointed out Equation (1) arises as the compatibility of
a pair of operators, see [5, 21, 24]. Under the boundary conditions1 (BC)
limr→∞ |u|(x, y, t) = 1 a convenient form of the Lax pair, depending on a
complex spectral parameter k, is given by the following pair of linear operators
L, M :

Lµ ≡ µxy + 1

k
µx +

(
k − ux

u

)
µy +

(
1 − 1

k

ux

u
− |u|2

)
µ = 0 (4)

Mµ ≡ µxx + iµt + 2kµx + 2nµ = 0. (5)

This Lax pair, which already incorporates a spectral parameter k ∈ C, is
more convenient than those used in [5] and [24]. We use n(x, y, t) ≡ ∂x

∫ y
−∞

(1 − |u|2) dy′. The existence of an eigen function µ(x , y, t , k) normalized to 1
as |k| → ∞ is assumed in the sequel. Then, Equations (4) and (5) implies that
µ(k) has an asymptotic expansion in the vicinity of infinity with coefficients
µ( j)(x , y, t), viz.

µ = µ(0) + µ(1)

k
+ µ(2)

k2
+ · · · , |k| → ∞ (6)

where µ(0) ≡ 1, |u|2 = 1 + ∂yµ
(1). (7)

This expression permits to recover the “physical amplitude” |u|2. The phase of
the potential u involves considering higher-order terms and will not be given
here.

3. Discrete spectrum and meromorphic eigenfunctions

3.1. General expansions

Here we show the existence of meromorphic eigenfunctions with poles
of higher-order multiplicity. These singular wave functions correspond to
potentials u(x , y, t) such that u − 1 is a regular function with slow decay at
infinity. The class of all such functions will define the discrete spectrum.

1The situation corresponding to general BCs and the bearing of this on the conserved quantities will not
be considered here. We also remark that the BC limr→∞ |u|(x, y, t) = 1 implies the need of constraints.
See [26] for the implications of this fact for KP equation
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We shall suppose that a meromorphic solution of both Equations (4) and (5)
exists with a finite or denumerable number of poles {kn}. Around any pole
k = k1, µ(k) has a local Laurent expansion

µ(k) = µ
k1)
sing.(k) + µk1)

reg.(k), (8)

where µk1)
reg.(k) ≡

∞∑
r=0

νr (k − k1)r , µ
k1)
sing.(k) ≡

m∑
r=1

φr

(k − k1)r
, (9)

and φr = φk1,r (x, y, t) and νr = νk1,r (x, y, t) are the LC in the local Laurent
expansion around k1. Here and elsewhere a subscript is used, whenever
appropriate, to stress the dependence of the former on the pole. Notice that
µ

k1)
sing.(k) is also termed the principal part or the pole divisor. In the next section

we study how they relate.
Unlike what happens in the regular case, where the eigenfunction is fixed by

the corresponding ∂-problem, when singularities exist the inverse problem does
not fix uniquely the singular part. Additional information—relating different
coefficients of the poles divisor—is required. As we see, the different LC must
be related in certain, nonunique, ways.

In this section, we consider examples of meromorphic eigenfunctions
related to nonsingular potentials and determine different relationships between
coefficients of the poles divisor.

3.2. Simple poles

We shall first suppose that µ ≡ µ(x , y, t , .) is a meromorphic eigenfunction
with a simple pole at k1. In this case Equation (8) reads

µ(x, y, t, k) = φ(x, y, t)

k − k1
+ µk1)

reg.(x, y, t, k). (10)

Insertion of the above into Equations (4) and (5) yields as k → k1 that φ and ν

≡ ν0 must satisfy

φxy + 1

k1
φx + φy

(
k1 − ux

u

)
+

(
1 − 1

k1

ux

u
− |u|2

)
φ = 0 (11)

νxy + 1

k1
νx + νy

(
k1 − ux

u

)
+ ν

(
1 − 1

k1

ux

u
− |u|2

)

+
(

φy − 1

k2
1

φx + 1

k2
1

ux

u
φ

)
= 0

(12)

and φxx + iφt + 2k1φx + 2nφ = 0, νxx + iνt + 2k1νx + 2nν + 2φx = 0.

(13)
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It turns out that the latter equations do not relate uniquely the coefficients. It
is possible to obtain infinitely many relationships compatible with the above
structure. Here we consider a few of them.

We first suppose that ν and φ are related as ν = f (x , y, t)φ. Then,
Equations (11)–(13) read(

fxy + fx + k1 fy −
(

fy − 1

k2
1

)
ux

u

)
φ + φy( fx + 1) + φx

(
fy − 1

k2
1

)
= 0

(14)

φ( fxx + i ft + 2k1 fx ) + 2φx ( fx + 1) = 0. (15)

We can satisfy these equations by requiring f to solve the following system of
constant differential equations

fxy + fx + k1 fy = fy − 1

k2
1

= 0, fxx + i ft + 2k1 fx = fx + 1 = 0. (16)

It follows that

f = −x − 2ik1t + y

k2
1

+ γ1, where γ1 ≡ γR + iγI ∈ C. (17)

Therefore, we have obtained that if φ solves both Equations (11) and (the first
of) (13) and also if the relationship between LC

ν0 =
(

−x − 2ik1t + y

k2
1

+ γ1

)
φ (18)

is satisfied, then (10) satisfies locally both (4) and (5). Whenever Equation (18)
holds we say that we have an eigenfunction with simple poles and standard
divisors. Such a relation was first established for KPI in [7].

We next study the possibility of having nonstandard pole divisors. To this
end we posit the existence of meromorphic eigenfunctions µ ≡ µ(x , y, t , .)
with simple poles, where a linear relationship between the three first LCs φ, ν0

and also ν1 obtains. We first note that, by going to next order, one obtains the
hierarchy of Equations (11)–(13) along with

(∂xx + i∂t + 2k∂x + 2n)ν1 + 2∂xν0 = 0 (19)

ν1xy + 1

k1
ν1x +

(
k1 − ux

u

)
ν1y +

(
1 − 1

k1

ux

u
− |u|2

)
ν1 − ν0x

k2
1

+ ν0y + ux

k2
1u

ν0 = 0. (20)

We shall assume next that Equation (18) no longer holds; instead, a linear
relationship between LCs of the form ν1 = f ν0 + gφ applies. Here f , g are
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certain functions to be determined. We find that Equation (19) is satisfied if

fxxν0 + gxxφ + 2 fxν0x + 2gxφx + i( ftν0 + gtφ) + 2k1( fxν0 + gxφ)

+ 2ν0x − 2 f φx = 0. (21)

This equation will be satisfied if f and g solve the linear system of PDE’s

fxx + i ft + 2k1 fx = 0, fx + 1 = 0, gxx + igt + 2k1gx = 0, gx = f. (22)

It follows first that f must be given, again, by (17). To solve the equations. for g
note that in the new coordinates y′ = y, t ′ = t , x ′ = f (x , y, t) they read g f =
− f , gff + igt = 0 which implies that g = − f 2

2 − i t + L(y). The unknown
function L(y) is determined substituting ν1 = f ν0 + gφ into Equation (20) to
find

ν1 = f ν0 + gφ ≡
(

−x − 2ik1t + y

k2
1

+ γ

)
ν0 −

(
f 2

2
+ i t + y

k3
1

− δ

)
φ

(23)
where γ and δ are complex constants. Thus, Equation (23) gives a different
relationship between the three first LCs φ, ν0, and ν1 of simple pole
eigenfunctions which is also compatible with the Lax pair. In this case we say
that we have simple poles of index 2.

3.3. Double poles

In this section, we assume the existence of a singular eigenfunction with a
double pole at some point k = k1. As we shall see admissible wave functions
require that the coefficients of the principal and regular parts are related in a
certain way. Suppose then that around a pole k = k1, µ(k) has a local Laurent
expansion with pole divisor

µ
k1)
sing.(k) = φ

k − k1
+ ψ

(k − k1)2
(24)

where we use the notation φk1,2 ≡ ψ, φk1,1 ≡ φ and also νk1,0 ≡ ν. By letting
k →k1 inEquations(4)and(5)wefindthat themaincoefficientsmustsatisfyψxx +
iψ t + 2k1ψ x + 2nψ = 0, and also

ψxy + 1

k1
ψx +

(
k1 − ux

u

)
ψy +

(
1 − 1

k1

ux

u
− |u|2

)
ψ = 0 (25)

φxy + 1

k1
φx +

(
k1 − ux

u

)
φy +

(
1 − 1

k1

ux

u
− |u|2

)
φ − 1

k2
1

ψx + ψy

+ 1

k2
1

ux

u
ψ = 0 (26)
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νxy + 1

k1
νx +

(
k1 − ux

u

)
νy +

(
1 − 1

k1

ux

u
− |u|2

)
ν − 1

k2
1

φx + φy

+ 1

k2
1

ux

u
φ + 1

k3
1

ψx − 1

k3
1

ux

u
ψ = 0 (27)

φxx + iφt + 2k1φx + 2nφ + 2ψx = 0 (28)

νxx + iνt + 2k1νx + 2nν + 2φx = 0. (29)

We look to satisfy these equations by assuming that the coefficients satisfy the
following linear relationships

φ = f ψ and ν = hψ (30)

where f , h depend on x , y, t . As above, from (26, 28) we first find f to be
given by Equation (17). Next, from (27, 29) h must satisfy

hxx + iht + 2k1hx + 2 fx = 0, hx + f = 0 (31)

or, alternatively, h f − f = 0, iht = 1 + 2k1 f . It follows that h = f 2

2 − i t + β(y),
for some function β(y). Inserting this into Equation (27) several terms cancel
and we see that it will be satisfied provided we require the simple condition
β ′ + 1

k3
1

= 0. Thus, the assumption (30) is compatible with the given analytic

structure provided f and h are given by

f = −x − 2ik1t + y

k2
1

+ γ and h = f 2

2
− i t − y

k3
1

+ δ (32)

where γ , δ are complex constants. Whenever such a possibility occurs we say
that the eigenfunction has double poles with index two.

However, it turns out that the relationship (30) is not the only one possible
for eigenfunctions with double poles: again, the assumed analytic structure
does not fix uniquely the way LCs are related. A different admissible situation
corresponds to having coefficients related as

φ = f ψ and ν1 = A(x, y, t)ν0 + B(x, y, t)ψ. (33)

It can be proven that if f = −x − 2ik1t + y
k2

1
+ γ, A = f + � and

B = −1

3

(
f 3 + 3/2� f 2) + i�t +

( �

k3
1

+ 1

k4
1

)
y + � (34)

where γ , �, � are complex constants—then the analytic structure (24) with (33)
corresponds to an eigenfunction of operators (4, 5). We skip the details here.
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4. Algebraically decaying solutions

Here we use the results of Section 3 to determine several classes of algebraically
decaying solutions of Equation (1); they correspond to concrete meromorphic
eigenfunctions whose LCs satisfy adequate relationships.

4.1. Properties of the standard lump solution

We first assume that µ(k) is a meromorphic eigenfunction that has the simple
representation

µ(k) = 1 +
(

φ1

k − k1
+ φ1̄

k + k̄1

)
(35)

i.e., we suppose that µ(k) has simple poles at k1 ≡ a + ib, −k̄1 and
corresponding residues φ1, φ1̄. We set k1 ≡ a + ib and suppose a �= 0; we also
require that every pole divisor is standard and hence satisfies Equation (18)
with constants k1, γ 1, and −k̄1, γ1̄ and that γ1̄ = γ̄1 ≡ γR − iγI ∈ C. Then,
Equation (18) yields

1 + φ1̄

k1 + k̄1
= f1φ1, 1 − φ1

k1 + k̄1
= f̄ 1φ1̄. (36)

Solving this system of linear equations and using Equation (7) we find the
potential:

|u|2 = 1 + ∂y(φ1 + φ1̄) = 1 − ∂yx log τ (37)

where the τ -function is just the determinant of the matrix associated to this
system:

τ ≡ f1 f̄ 1 + 1

4a2
. (38)

Obviously, this solution is smooth and has a rational decrease to the
background value u∞ = 1.

Remark. We expect that in a general situation nonsingular solutions
are associated to a discrete spectrum with pairs of poles k1, k1̄ = −k̄1 and
appropriate norming constants satisfying, say, γ1̄ = γ̄1. Understanding why this
must hold poses an interesting question.

To study further dynamical properties of the solution it is useful to consider
new coordinates (X , Y ) defined by

X = x − V t − γ̃ , Y = y + bV 2t + γI

ρ
(39)
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where we rename parameters as

V = a2 + b2

b
, β = a2 − b2

(a2 + b2)2
, ρ = − 2ab

(a2 + b2)2
, γ̃ ≡ γR − a2 − b2

2ab
γI .

(40)
In this frame, we have τ = (X − βY )2 + ρ2Y 2 + 1

4a2 and the potential reads

|u|2 = 1 − 2β

(
(X − βY )2 + ρ2Y

β
(βY − 2X ) − 1

4a2

)
1

τ 2
. (41)

Thus, solution (41) is a traveling wave which will be called the standard
1-lump solution of Equation (1). Further properties of the former solution are
of interest. It displays a maxima structure far richer than what is common
for both lump and soliton solutions. Inspection shows that critical points are
located at (X , Y ) = (0, 0) and

X = ± 1

4ab

√
3b2 − a2, Y = ±a2 + b2

4ab

√
3b2 − a2 (42)

Y = ±a2 + b2

4a2

√
3a2 − b2, X = ∓ 1

4a2

√
3a2 − b2. (43)

These points are all candidates to maxima and minima; the number of them
will vary depending on the values of the parameters. The parameter space is a
two-dimensional plane deprived of the straight line a = 0. To describe the
situation in the general case we restrict, with no loss of generality, to the first
quadrant on the parameter space. The situation varies according to which of
the regions

C1 ≡
{

(a, b) : a ≤ b√
3

}
, C2 ≡ {(a, b) : b/

√
3 ≤ a ≤ √

3b},

C3 ≡ {(a, b) : 0 ≤ √
3b ≤ a}

do parameters belong. If (a, b) is in the interior of C2 then two of the four points
described by (42, 43) are maxima and the other two are minima. Point (X , Y ) =
(0, 0) is a saddle point between the former at which |u| = |3a2 − b2|/(a2 +
b2). In the particular case when a = b the potential’s amplitude reads simply

υ ≡ |u|2 − 1 = XY

a4

(
X2 + Y 2

4a4
+ 1

4a2

)2 . (44)

It has two symmetric maxima located at p = ±√
2( 1

4a , a
2 ) at which υ ≡|u|2 − 1 =

1 while minima are to be found at the mirror images points at which υ = −1.
The boundary point a = √

3b corresponds to a configuration having a
maximum (X , Y ) = (0, 0) at which υ = 3; the minimum lump’s amplitude
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υ = −1 is to be found at the points (X, Y ) = ±
√

8
12b (1, −4b2). At the other

boundary point b = √
3a > 0 the situation is opposite and is rather reminiscent

of dark solitons; it corresponds to a configuration having minimum amplitude
υ = −1 at the origin and maximum amplitude υ = 3/25 at the points
(X, Y ) = ±

√
8

4
√

3a
(1, 4a2).

Thus, generically the configuration is localized on an entire region containing
several maxima.

The choice b = 0 yields a degenerate solution that deserves some attention.
In this case letting t̂ ≡ t − γI /2a, z ≡ x − y

a2 + γR the solution and the
maximum amplitude read

υ ≡ |u|2 − 1 = 2

a2

−z2 + 4a2 t̂2 + 1

4a2(
z2 + 4a2 t̂2 + 1

4a2

)2 , max
x,y

υ(x, y) = 8

16a4 t̂2 + 1
. (45)

It follows that an observer located in a frame at rest will see a pulse supported
on the line z = 0 appearing at t̂ = 0 but it soon ebbs away. Thus the
configuration is not a solitary wave.

4.2. Remark on the standard N-lump solution

The standard N-lump solution is constructed by simply considering a
superposition of poles with similar properties, i.e, pairs of simple poles
k j , −k̄ j , j = 1, . . . N of index one with associated norming constants γ j and
γ j̄ = γ̄ j . Asymptotically, such a solution behaves simply as a superposition of
modes given by (41). A more interesting case from a dynamical perspective is
considered next.

4.3. Nonstandard two-lump solution

Here we construct a different two-lump solution which has interesting dynamics.

Let Z ≡ X − βY and −g ≡ f 2
1
2 + i t + y

k3
1
− δ (see Equation (23)). Then this

nonstandard two-lump solution is given by |u|2 = 1 − ∂yx log τ where the τ

function is

τ = |g|2 + 1

4a2

[(
Z + 1

2a

)2

+ ρ2Y 2

]
+ 1

16a4
. (46)

and k1 ≡ a + ib, g = gR + igI , ε = a2−3b2

a2+b2
a
b . Note also that, in terms of the

coordinates coordinates defined by Equations (39) we have

gR = 1

2
Z2 − 2a2b2

(a2 + b2)4
Y 2 + ε

( bY

(a2 + b2)2
− t + γI

2

)
(47)
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gI = 2ab

(a2 + b2)2
ZY + b(3a2 − b2)

(a2 + b2)3
Y − 4a2

a2 + b2
t. (48)

From a spectral perspective this solution is associated to a meromorphic
eigenfunction with a simple and a double pole; concretely, it is uniquely
associated to the following eigenfunction

µ = 1 + φ1

k − k1
+ φ1̄

k + k̄1
+ ψ1̄

(k + k̄1)2
. (49)

provided that both poles have index 2. Thus, the LC at the simple pole k1

satisfy (23) while the coefficients of the double pole satisfy (30), (32). The
proof of this fact is given in Appendix.

In the sequel we concentrate in the study of the dynamical properties of this
field. To simplify calculations we take a = b. A plot of the solution (see
Figures 1, 2 below) shows that it corresponds to a two-humped configuration. A
closer inspection shows for each hump a structure similar to that of the standard
lump with several maxima and minima. However the dynamical behavior of this
configuration does not correspond—not even asymptotically—to superposition
of basic one-lumps. We next show that lump dynamics consists of a constant
velocity “center of mass” motion upon which a slower, lump dependent
motion is superseded. Hence, regardless of whether or not scattering happens,
lump dynamics can be thought of as arising from a certain interaction force
between them inversely proportional to the cube of the distance. Actually,
lumps experience a head-on collision upon which they scatter and get rotated a
certain scattering angle. In the sequel we substantiate the above claims.

Let p±∞ ≡ (Z±∞(t), Y ±∞(t)) be the lumps positions as t → ±∞ with
respect to the reference system (Z , Y ) where Z ≡ X − βY . We seek to

Figure 1. Nonstandard lumps at t = −10.
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Figure 2. Nonstandard lumps at t = 10.

satisfy τ (Z±∞, Y ±∞, t) = O(t) to dominant orders. Note that calculation
shows that in this case we also have τ y , τ x = O(t) and u(Z±∞ (t), Y ±∞ (t),
t) = O(1)—thereby defining the lump positions. We find that p±∞ can be
expanded as

Z±∞ = ζ±√
|t | + z±∞

0 + O(|t |−1/2), Y ± = ι±
√

|t | + ι±0 + O(|t |−1/2) (50)

where ζ± = (
√

5 ∓ 1)1/2, ι± ≡ ±4a2/ζ±,

ι±0 = −4a2(4 ∓ √
5) + √

5 ± 1

4a(3
√

5 − 5)
, z±

0 = −4a2 ± √
5 − 1

4a3(5 ∓ √
5)

. (51)

Also, if p±∞ is one of the lump positions then so it is −p±∞.
In the coordinates X = x − 2at − γ̃ , Y = y + 4a3t + γI

ρ
the asymptotic

trajectory is given by the line

Y ±∞ − Y ±∞
0 = 4a2

√
5 ∓ 1

(
X±∞ − X±∞

0

)
. (52)

For long times the solution has two separate lumps p±∞ and −p±∞, which,
as seen in the Galilean frame (39), move along a common straight line, cf.
Equation (52). They approach each other and after a frontal collision scatter
off. The scattering angle � follows from Equations (50) as

cos � = 2
1 − 4a4√

(3 + 8a4)2 − 5
. (53)

Since the two lumps are indistinguishable upon scattering, we take the
convention that as a increases from 0 to a = 1√

2
so it does � varying
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from 0 to a maximum scattering angle π /2, upon which the angle decreases
asymptotically to zero for large values of the parameter.

We have depicted above this situation and show the lump positions before
and after scattering corresponding to a = b = 1/2 (see Figures (1, 2)). It is
interesting to point out that this scattering process presents novel features as
compared to what happens with lumps in DSII, where the scattering angle is
necessarily normal or KPI where the angle is a monotone function of the real
part of the spectral parameter.

In the original “laboratory frame,” the lump’s dynamics is a composition of
two motions: an uniform motion, common to the whole structure, i.e., to both
lumps and a second, slower one, that behaves as |t |1/2 and depends on the
individual lump. Notice that the “center of mass” motion can be eliminated
away by proper choice of Galilean frame. By contrast, the latter although
slower, is the only nontrivial physical effect and can be thought of as arising
due to a force between particles which makes the particles to scatter off. In the
“laboratory frame” scattering is different as viewed from the “center of mass”
one. Indeed lumps move along the parabolas given by

(
√

5 ∓ 1)(y + 2a2x)2 + (3 ∓
√

5)2ay − 2a(3 ∓
√

5)(y + 2a2x) = 0. (54)

Thus, for long times both lumps move along almost parallel paths, that can be
approximated by straight lines.
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Appendix

Here we show how to obtain solution (46). Assume that the eigenfunction
µ is given by (49) where both poles k1, −k̄1 have index 2. It follows
from this representation and series expansion that the principal LCs
ν1,0 ≡ νk1,0, ν1,1 ≡ νk1,1, ν1̄,0 ≡ ν−k̄1,0 are given by (see Equation (9) and
discussion below)

ν1,0 = 1 + φ1̄

k1 + k̄1
+ ψ1̄

(k1 + k̄1)2
, −ν1,1 = φ1̄

(k1 + k̄1)2
+ 2ψ1̄

(k1 + k̄1)3
,

and ν1̄,0 = 1 − φ1

k1 + k̄1
. (A.1)
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Furthermore, Equations (30) and (23) imply, respectively, that

φ1̄ = f1̄ψ1̄, ν1̄,0 = h1̄ψ1̄ and ν1,1 = f1ν1,0 + g1φ1 (A.2)

where we recall (32) that f1 ≡ −x − 2ik1t + y
k2

1
+ γ, f1̄ = −x + 2i k̄1t + y

k̄2
1
+

γ1̄,

h1̄ ≡ h(−k̄1) = f 2
1̄

2
− i t + y

k̄3
1

+ δ1̄, g1 ≡ −
(

f 2
1

2
+ i t + y

k3
1

− δ1

)
(A.3)

and we take γ1̄ = γ̄1, δ1̄ = −δ̄1. Notice that f1̄ = f̄ 1, h1̄ = −ḡ1. With α ≡ 1
2a

we find upon insertion in Equation (A.1) the following system of equations for
the unknowns φ1 and ψ1̄:

g1φ1 + (
α2( f1 + f1̄) + 2α3 + α f1 f1̄

)
ψ1̄ = − f1, αφ1 − ḡ1ψ1̄ = 1. (A.4)

We solve this by Cramer’s rule. Reminding that φ1̄ = f1̄ψ1̄ substitution into
Equation (6) gives

|u|2 = 1 + ∂y(φ1 + φ1̄) = 1 − ∂yx log τ (A.5)

where τ is the determinant of the associated matrix which coincides with (46).
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