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In this work we study the behavior of the allowed and forbidden frequencies in disordered classical dual
transmission lines when the values of capacitances {C j} are distributed according to a ternary model
with long-range correlated disorder. We introduce the disorder from a random sequence with a power
spectrum S(k) ∝ k−(2α−1) , where α � 0.5 is the correlation exponent. From this sequence we generate an
asymmetric ternary map using two map parameters b1 and b2, which adjust the occupancy probability
of each possible value of the capacitances C j = {C A,C B,CC,}. If the sequence of capacitance values is
totally at random α = 0.5 (white noise), the electrical transmission line is in the non-conducting state
for every frequency ω. When we introduce long-range correlations in the distribution of capacitances,
the electrical transmission lines can change their conducting properties and we can find a transition
from the non-conducting to conducting state for a fixed system size. This implies the existence of critical
values of the map parameters for each correlation exponent α. By performing finite-size scaling we obtain
the asymptotic value of the map parameters in the thermodynamic limit for any α. With these data
we obtain a phase diagram for the symmetric ternary model, which separates the non-conducting state
from the conducting one. This is the fundamental result of this Letter. In addition, introducing one or
more impurities in random places of the long-range correlated distribution of capacitances, we observe a
dramatic change in the conducting properties of the electrical transmission lines, in such a way that the
system jumps from conducting to non-conducting states. We think that this behavior can be considered
as a possible mechanism to secure communication.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

According to the localization theory of Anderson [1], in 3D sys-
tem with uncorrelated distribution of disorder, all one-electron
states are spatially localized with an exponentially decaying enve-
lope with a characteristic localization length ξ , when the disorder
strength is larger than a critical value. Instead, Mott and Twose [2]
claimed that all states are localized in 1D for non-vanishing disor-
der.

Recently, analytical as well as numerical studies revealed that
delocalized electronic states can exist in a one-dimensional disor-
dered lattice with short-range [3–7] and long-range [8–17] corre-
lations. In addition, from the scaling theory [21] it is well known
that an infinitesimal disorder can cause localization of all states
in one- and two-dimensional systems in the thermodynamic limit.
A clear picture of the delocalization mechanism of the long-range
correlations in the disorder appears in a work by Díaz et al. [22].

* Corresponding author.
E-mail address: edmundolazon@gmail.com (E. Lazo).
0375-9601/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2010.06.031
Experimental evidence of delocalization produced by correlated
disorder has been shown in the study of microwave propagation
through disordered waveguides [18] and subterahertz response of
superconducting multilayer [19] and in semiconductor superlat-
tices with intentional disorder [20].

In this work we propose to study the conducting behavior of
classical electrical transmission lines with long-range correlated
disorder in the distribution of capacitances {C j}. The scaling the-
ory is used to study the phase transition in the thermodynamics
limit. We introduce the disorder from a random sequence with
a power spectrum S(k) ∝ k−(2α−1) , where α � 0.5 is the corre-
lation exponent. From this sequence we generate an asymmetric
ternary map using two map parameters b1 and b2, which adjust
the occupancy probability of each possible value of the capaci-
tances C j = {C A,C B,CC,}. If the sequence of capacitance values is
totally at random α = 0.5 (white noise), the electrical transmission
line is in the non-conducting state for every frequency ω. When
we introduce a long-range correlation in the distribution of capac-
itances by mean of the correlation exponent α (we use α � 0.55
in the present work) and depending on the values of the ternary
map parameters b1 and b2, electrical transmission lines can change
their conducting properties and we can find a transition from the
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Fig. 1. Segment of an infinite electric circuit of classical impedances.

non-conducting to conducting state for a fixed system size. This
implies the existence of critical values of the map parameters for
each correlation exponent α. By performing finite-size scaling we
obtain the asymptotic value of the map parameters b1 and b2 in
the thermodynamics limit for any α. With these data we present
below a phase diagram for the symmetric ternary model, which
separates the non-conducting state from the conducting one. This
is the fundamental result of this Letter.

In addition, introducing one or more impurities in random
places of the long-range correlated distribution of capacitances,
we observe a dramatic change in the conducting properties of
the electrical transmission lines, in such a way that the system
jumps from conducting to non-conducting states. We think that
this behavior can be considered as a possible mechanism to secure
communication.

Using classical circuits we can show the non-conducting to con-
ducting transition, in analogy with the tight-binding formalism of
quantum mechanics.

2. Model and method

We consider electrical circuits of classical impedances Z j and
g j as shown in Fig. 1. Application of Kirchhoff’s Loop Rule to three
successive unit cells of the circuit leads to the following linear re-
lation between the currents circulating in the ( j − 1)-th, j-th and
( j + 1)-th cells

(Z j + g j−1 + g j)I j − g j−1 I j−1 − g j I j+1 = 0 (1)

2.1. Dual transmission line

Using the horizontal impedances being equal capacitances with
Z j = ( −i

ωC j
) and vertical impedances being equal to inductances

with g j = (iωL j), we obtain the equation for disordered dual
transmission lines

d j I j − L j−1 I j−1 − L j I j+1 = 0 (2)

where d j = (L j−1 +L j − 1
ω2C j

). This equation describes the behavior

of transmission lines with diagonal and non-diagonal disorder.
Eq. (2) takes the same form of the general equation of ele-

mentary excitations on a 1D chain with diagonal and off-diagonal
disorder:

α jφ j − t j, j−1φ j−1 − t j, j+1φ j+1 = 0 (3)

where φ j represents the amplitude of the excitation at position j,
α j is a parameter which generally depends on the excitation en-
ergy E and other physical constants of the system, and t j, j±1 de-
scribes the efficiency with which the excitation spreads from one
point to another of the chain and, in general, also depends on
the energy of the excitation. In particular, for the diagonal tight-
binding Anderson model [1], relation (3) can be written as

(E − ε j)φ j − φ j−1 − φ j+1 = 0 (4)
where E is the eigenenergy and ε j is the on-site energy. The An-
derson model (4) gives an exact description of the diagonal dis-
ordered dual transmission lines when we consider in relation (2),
that all inductances are the same: L j = L0, i.e.,(

2 − 1

ω2L0C j

)
I j − I j−1 − I j+1 = 0 (5)

As a consequence, the correspondence between Anderson model
(4) and disordered classical circuits (5), can be used to test the
quantum effects of Anderson localization.

In this Letter, in order to study the transition from non-
conducting to conducting states in disordered dual transmission
lines, we use the Lyapunov exponent formalism. The Lyapunov ex-
ponent λ(ω) is a function of the frequency ω and can be defined
as

λ(ω) = Lim
N→∞

1

N

N∑
j=1

ln

∣∣∣∣ I j+1

I j

∣∣∣∣ (6)

where I j and I j+1 are the currents circulating in cells j and ( j+1),
respectively. In the general case, dividing Eq. (2) by I j , we obtain

d j − L j−1
I j−1

I j
− L j

I j+1

I j
= 0 (7)

Defining γ j = L j
I j+1

I j
, Eq. (7) can be put in the following recurrence

form

γ j = d j − L2
j−1

γ j−1
(8)

Using relation (8) and the γ j definition, we can write the Lyapunov
exponent λ(ω) given by relation (6) in the following form

λ(ω) = Lim
N→∞

1

N

N∑
j=1

ln

∣∣∣∣γ j

L j

∣∣∣∣ (9)

In this work we study the diagonal disordered dual transmis-
sion lines. In such case all inductances are the same: L j = L0 and
the term

γ j
L j

of Eq. (9) becomes γ j = γ j
L0

. Dividing by L0, the recur-

rence equation (8) can be written as

γ j = d j − 1

γ j−1
(10)

where γ j−1 = γ j−1
L0

and d j = d j
L0

= 2 − 1
ω2 L0C j

. Using C j = α j C0, we

have

γ j =
(

2 − 1

ω2L0C0α j

)
− 1

γ j−1
(11)

Defining ω = (ω
√

L0C0 ) as the frequency measured in units of
( 1√

L0C0
), we finally write the recurrence equation in the following

way

γ j =
(

2 − 1

ω2α j

)
− 1

γ j−1
(12)

In this way, the correlated disorder introduced in the sequence of
capacitances C j = {C A, C B , CC } given by the ternary map, is now
introduced in the coefficient α j , because C j = {αA,αB ,αC }C0. In
all numerical calculations and in all figures we use the symbol ω
as the frequency measured in units of ( 1√

L0C0
). The Lyapunov ex-

ponent λ(ω) is a suitable tool to describe conduction properties
through the transmission line, because it is related to the expo-
nential decrease of the electric current function. The localization
length ξ(ω) is defined as the inverse of the Lyapunov exponent:
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ξ(ω) = 1

λ(ω)
(13)

This relation gives the single value of ξ(ω) only for the infinite
system size N → ∞. However, when N is finite, the calculated
result of Eq. (13) – denoted as ξN – depends on the choice of
the sequence of capacitances {C j}. To obtain a typical value of ξN

for a given N , we take the mean of ξN over 5000 samples from
which we define the normalized localization length Λ = ξN

N on
the system size N . In this work we use the localization length Λ

to characterize conducting or non-conducting states using the fol-
lowing criteria for a fixed number of cells N in the transmission
lines: if Λ(ω) � 1 we have a conducting transmission line for the
frequency ω because ξN � N , and if Λ(ω) < 1, we have a non-
conducting transmission line for the frequency ω because ξN < N .
The non-conducting (conducting) states in disordered transmis-
sion lines are analogous to the localized (delocalized) states in 1D
disordered quantum system. In all numerical calculations, the pos-
sibility of a phase transition from non-conducting to conducting
transmission lines is investigated for a fixed frequency ω = 3.6.
However, in the thermodynamic limit, N → ∞, we have verified
that the results do not change when we use a different frequency
ω′ �= ω. In this work we study the diagonal disordered model,
which means that we do L j = L0, ∀ j.

2.2. Long-range correlated disorder

We want to study the localization properties of a ternary model
with long-range correlated disorder. Thus, we need first to gener-
ate numerical long-range correlated sequences {v j} to build the
ternary map. A sequence of long-range correlated terms {v j} is
produced by the Fourier filtering method [23]. This method ini-
tially uses a set of numbers {u j} which are uncorrelated random
numbers with a Gaussian distribution. After that, we take the fast
Fourier transform (FFT) of the random sequence {u j}, obtaining
the sequence {uk}. Now we introduce the long-range correlation
by means of the following process

vk = ukk−(2α−1)/2 (14)

defining in this way a new sequence {vk}. Finally we calculate the
inverse FFT of {vk}, obtaining {v j}. This sequence is spatially cor-
related with the spectral density

S(k) ∝ k−(2α−1) (15)

The exponent α is called correlation exponent and quantifies the
degree of long-range correlation imposed in the system. With this
definition, α corresponds to the exponent provided by Detrended
Fluctuation Analysis (DFA), which is one of the most widely used
methods to quantify long-range correlations [24–26]. The case α =
0.5 corresponds to the uncorrelated disorder (white noise), while
the case α > 0.5 indicated positive correlations. As a last step we
normalize the sequence {v j} to obtain zero average, 〈v j〉 = 0 and
the variance is set to unity. We have confirmed that the sequences
{v j} produce the power-law spectral density S(k) ∝ k−(2α−1) for all
α � 0.5. With this normalized sequence {v j} we build the asym-
metric ternary models. The asymmetric model is generated by
means of a transformation which maps the elements of the nor-
malized long-range correlated sequence {v j} into three different
values of capacitances C j = {C A, C B , CC }.

2.3. The asymmetric ternary model

The sequence of capacitances {C j} of the asymmetric ternary
model is given by
C j =
⎧⎨
⎩

C A if v j < b1

CC if b1 � v j � b2

C B if v j > b2

(16)

with b2 � b1. The symmetric ternary case [14] corresponds to b2 =
−b1 = b and b > 0.

The asymmetric binary map can be obtained for b2 = b1 = b

C j =
{

C A if v j < b

C B if v j � b
(17)

In the limit b → 0, we obtain the symmetric binary map.
Binary (17) and ternary (16) maps can change the correlation

properties of the sequence {v j}, and therefore, the correlation of
the sequence {C j} is not properly quantified by the correlation ex-
ponent α in the original correlated sequence {v j}.

The metal–insulator transition in binary and ternary symmet-
rical model for 1D tight-binding systems has been studied in
Refs. [9,11] and [14], respectively.

2.4. The finite-size scaling

An effective identification of critical points of finite systems is
the finite-size scaling [27–29]. Finite-size scaling characterizes the
scaling behavior of thermodynamic quantities of finite system near
a critical point. The main points of the finite-size scaling can be
described as the following. An observable Q of a finite system is
a function of a critical parameter P and system size N . When N
is much larger that the microscopic length scale and P is in the
vicinity of critical point Pc , the observable Q (P , N) can be written
in the finite-size scaling form [30]

Q (P , N) = N
λ
ν F Q

(
tN

1
ν
)

(18)

where t = (P − Pc)/Pc is the reduced critical parameter and λ is
the critical exponent of the observable Q and ν is the critical ex-
ponent of the correlation length ξ = ξ0t−ν .

Using finite-size scaling we can find the critical point. At critical
point P = Pc , the reduced critical parameter t goes to zero, t = 0,
and relation (18) becomes

Q (Pc, N)N− λ
ν = F Q (0) (19)

where the finite-size scaling function F Q (0) is constant and inde-
pendent of the system size N . In the plot of Q (P , N)N− λ

ν versus P ,
the critical point [Pc, F Q (0)] is a fixed point, where all curves of
different system sizes converge to. Reversely, the appearance of a
fixed point indicates the existence of a critical point. Using this
behavior, the critical point can be found from the system size de-
pendence of the observable.

In another way, taking the logarithm of relation (18), we have

ln Q (P , N) = λ

ν
ln N + ln F Q

(
tN

1
ν
)

(20)

At critical point, P = Pc and t = 0, the finite-size scaling func-

tion F Q (0) is constant and, consequently, the term ln F Q (tN
1
ν ) be-

comes a constant. This mean that ln Q (Pc, N) becomes a straight
line with respect to ln N . When the system is away from the criti-

cal point, i.e., P �= Pc and t �= 0, the function F Q (tN
1
ν ) depends on

the critical parameter P and on the system size N . In this case the
relation (20) does not represent a straight line.

In this work we can use the finite-size scaling considering,
as the observable Q , the normalized localization length Λ, i.e.,
Q = Λ. In general, Λ = Λ(ω,b,α, N), depends on the frequency ω,
the map parameter b (for the symmetric ternary model), the cor-
relation exponent α and the system size N . In our case, the pa-
rameters b and α can be considered as critical parameters. When
we use the map parameter b as the critical parameter for a fixed
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Fig. 2. Normalized localization length Λ(b, N) as a function of the parameter b, for fixed frequency ω = 3.6 and different correlation exponents α = {0.6,0.8,1.0} for a fixed
system size N = 215. The inset shows the same situation, but for α = {1.2,1.4,1.6}.
correlation exponent α, there exist only one critical points bc .
However, when we use the correlation exponent α as the criti-
cal parameter for a fixed map parameter b, there are two critical
points αc1 and αc2 with αc1 < αc2 (see the phase diagram below).

If we consider the map parameter b as the critical parame-
ter, i.e., P = b, for a fixed correlation exponent α and a fixed
frequency ω, the fixed point can be found by investigating the
dependence of the function Λ(b, N)N−β of parameter b for dif-
ferent system sizes. When a fixed point is observed, at a certain
parameter β , it indicates the existence of a critical point and the
parameter β is related to the ratio of critical exponents, i.e., β = λ

ν
of the relation (19).

3. Numerical results

3.1. The symmetrical map

In this work we study numerically the localization properties
of dual transmission lines when the long-correlated disorder is ob-
tained from the symmetric ternary maps: b2 = −b1 = b and b > 0.
In all numerical calculations, the possibility of a phase transition
in the thermodynamic limit from non-conducting to conducting
transmission lines is investigated for a fixed frequency ω = 3.6.

In this work we use the ternary symmetrical map parameter b
as the critical parameter, i.e., b = b(α) as a function of the corre-
lation exponent α. In this way, we numerically study the behavior
of the observable Λ(b, N) on the system size N . The critical point
b = bc permits us to discriminate between non-conducting states
from conducting states. Fig. 2 plots Λ(b, N) as a function of the pa-
rameter b, for a fixed frequency ω = 3.6 and different correlation
exponents α = {0.6,0.8,1.0} for a fixed system size N = 215. The
inset shows the same situation for α = {1.2,1.4,1.6}. For each cor-
relation exponent α, the normalized localization length Λ(b, N) is
a growing function of the parameter b, until a critical point b = bc

appears. For b > bc , Λ(b, N) is practically independent of b.
Fig. 3 shows the normalized localization length Λ(b, N) as a

function of the map b parameter for a fixed α = 0.7, for differ-
ent system sizes N = {217,218,219}. In this case, all curves change
their behavior near a critical point. This critical point corresponds
to a finite system size N . In the thermodynamic limit, the critical
value bc(α) will be found using the finite-size scaling method.

Fig. 4 shows the normalized localization length Λ(ω) as a func-
tion of the frequency ω for α = 0.7 and three different values of
the parameter b = {2.1,2.2,2.3}, for a fixed system size N = 215. In
all graphs Λ(ω) versus ω of this work, we have averaged over ten
frequency values to avoid large fluctuations in the value of Λ(ω).
In Fig. 4 we clearly can see that the curve Λ(ω) is a growing func-
tion of the parameter b. For b = 2.1 and b = 2.2 we have Λ(ω) < 1,
i.e., ξN < N and the dual transmission line is in the non-conducting
state for every frequency ω. For b = 2.3, a portion of the curve
Λ(ω) satisfies the condition Λ(ω) � 1, i.e., ξN � N . In this case we
can say that the transmission line is in the conducting state, be-
cause the average localization length ξN is greater than the system
size N for a certain band of frequency values. As a consequence,
there is a critical parameter bc , such that for b > bc , it can be
observed a mobility edges separating non-conducting states from
conducting ones. It means that there exists a continuum spectrum
of conducting states, at least for a finite system size N of the dual
transmission lines.

To characterize the scaling behavior of Λ(b, N) for a finite sys-
tem size near critical point, we will use the finite-size scaling. To
do that, for a fixed correlation exponent α, we can write the rela-
tion (19) in the following form

Λ(b, N)N−β = FΛ(0) (21)

where β is the critical exponent. In this way, we can find the fixed
points bc for each α value, varying the critical exponent β . Fig. 5
shows the presence of a fixed point bc ≈ 2.54 for α = 0.7 and
ω = 3.6 for various system sizes ranging from N = 217 to 220, for
a specific critical exponent β0. In this fixed point bc ≈ 2.54, a con-
vergence of all curves for different sizes N can be observed.

In addition, using relation (20), the scaling relation for the nor-
malized localization length Λ(b, N), can be written as

lnΛ(b, N) = β ln N + ln FΛ

(
tN

1
ν
)

(22)

where now t = b−bc
bc

is the b reduced critical parameter. The criti-
cal point b = bc can be found studying the system size dependence
of lnΛ(b, N) for different values of the map parameter b. At criti-
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Fig. 3. Normalized localization length Λ(b, N) as a function of the map parameter b for fixed correlation exponent α = 0.7, for different system sizes N = {217,218,219}. In
this case, all curves qualitatively change their behavior near a critical point (bc ≈ 2.5).

Fig. 4. Normalized localization length Λ(ω, N) as a function of the frequency ω for α = 0.7 and three different values of the parameter b = {2.1,2.2,2.3}, for fixed system
size N = 215.
cal point, b = bc (t = 0), in this case ln Λ(bc, N) becomes a straight
line with respect to ln N , because ln FΛ(0) becomes a constant.

Using relation (22), we have found every critical point bc(α) at
thermodynamical limit. Fig. 6 shows the typical behavior for the
case α = 0.7, ω = 3.6, when the system size varies from N = 217

to N = 220. There we can see that the best straight line (with a
correlation coefficient R = 0.99985) occurs when b = bc = 2.54. In
our work, all critical points bc(α) were found with a correlation
coefficient greater than 0.999.

In this way, using the finite-size scaling method, we have found
all the critical points bc(α) which separate non-conducting states
from conducting states of the dual disordered transmission lines.
With these data we have found the phase diagram shown in Fig. 7.
This phase diagram is the main result of this Letter, and contains
all the information of the conducting properties of the disordered
dual transmission lines when the disorder is given by a long-range
correlated symmetric ternary model, which is characterized by the
symmetric map b parameter and the correlation α exponent. The
plotted points in Fig. 7 correspond to values of the correlation
exponent α � 0.55, i.e., the disordered systems which we have
studied always presents long-range correlation. The case α = 0.5
corresponds to an uncorrelated disorder (white noise) and, there-
fore, the disordered system is in the non-conducting regime.

3.2. The asymmetrical map

For the asymmetric ternary map (16) where b1 �= b2, the long-
range correlated ternary model behaves in a way very similar to
the symmetric ternary map just studied. However, a calculation
of the complete phase diagram for parameters b1,b2 and α, is of
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Fig. 5. Scaling plot of (Λ(b, N)N−β ) versus the map b parameter for α = 0.7 and ω = 3.6 for various system sizes N . For a specific critical exponent β0, a fixed point appears
(bc ≈ 2.54), where all curves of different system sizes converge.

Fig. 6. Scaling plot of ln(Λ(b, N)) versus ln(N) for α = 0.7, ω = 3.6, for different b values when the system size varies from N = 217 to N = 220. The best straight line (with
a correlation coefficient R = 0.99985) occurs when the critical point is bc = 2.54.
great difficulty and out of the scope of the present manuscript.
Fig. 8 shows the behavior of the normalized localization length
Λ(ω) as a function of the frequency ω for the case b1 = −0.9,
b2 = 1.7 for different correlation exponents α = {1.7,1.8,2.0,2.6}.
There we can see bands of continuum spectrum of conducting
states for α = 2.0 and α = 2.6, for finite system size N = 215, in
a similar way to the behavior observed in Fig. 4 for the ternary
symmetric map.

3.3. The symmetric binary map

In addition, we have studied the special case b1 = b2 = 0, cor-
responding to the symmetric binary map (17). In this case, using
the finite-size scaling, we have found conducting bands in the dual
transmission lines for correlation exponent α � 2.0. For binary
map in 1D tight-binding systems, the conducting bands appear for
α � 1.5 (see Refs. [9,11]).

In summary, when we use binary or ternary maps (symmetric
or asymmetric) to generate the distribution of capacitances {C j} in
the dual classical transmission lines, we obtain bands of continuum
spectrum of conducting states for certain values of the correlation
exponent α and the map parameters b1 and b2.

3.4. Secure communication

Let us consider a transmission line which is in the conduct-
ing state for a specific value of the correlation exponent α and
the map parameters b1 and b2. If we introduce one or more ca-
pacitance values Cr generated at random (impurities) in random
places of the transmission line, breaking in this way the long-range
correlated sequence of capacitors, which are the changes in the
normalized localization Λ(ω)? Fig. 9 shows the numerical answer
to this question. There we show the normalized localization length
Λ(ω) as a function of the frequency ω for the ternary asymmet-
ric case b1 = −0.9, b2 = 1.7, with correlation exponent α = 1.9,
for finite system size N = 215. We compare the case without ran-
dom capacitances Cr (0 random) with the cases with one, two
and three random capacitances Cr (n random). The effect of break-
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Fig. 7. Phase diagram separating non-conducting from conducting states in the thermodynamics limit in terms of the symmetric map parameter bc(∞) as a function of the
correlation exponent α. The plotted points correspond to values of the correlation exponent α � 0.55, i.e., the disordered system always presents long-range correlation.

Fig. 8. Normalized localization length Λ(ω) as a function of the frequency ω for the asymmetric ternary map when b1 = −0.9, b2 = 1.7 for different correlation exponents
α = {1.7,1.8,2.0,2.6}.
ing the long-range correlated sequence of capacitors with n ran-
dom capacitances is remarkable, since the introduction of at least
one impurity (1 random), the normalized localization length Λ(ω)

jumps from the conducting state (Λ � 1) to a non-conducting state
(Λ < 1). When putting two or more impurities, the long-range
correlation tends to be destroyed almost completely. As a con-
sequence, the dual transmission line becomes a non-conducting
system. This is an interesting effect that can be used in secure
communication, because any alteration of the long-range corre-
lated sequence by means of a change in the capacitance of any
capacitor, in any place of the transmission line, reduces drastically
the conducting band or even the transmission line jumps from a
conducting state to a non-conducting state. See Ref. [31] for a new
method to secure communications, which does not require coding
and decoding of the transmitting signal.

4. Conclusion

In summary, we have studied the classical dual transmission
lines introducing long-range correlated disorder by means of the
symmetric and asymmetric ternary model used to generate the se-
quence of capacitances {C A, C B , CC }. For a given correlation expo-
nent α of the original sequence, the normalized localization length
Λ(b1,b2, N) depends on the asymmetric parameters b1 and b2 in
a complicated way, and they are responsible for the phase transi-
tion from non-conducting to conducting states of the dual trans-
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Fig. 9. Normalized localization length Λ(ω) as a function of the frequency ω for the ternary asymmetric map for b1 = −0.9, b2 = 1.7, with correlation exponent α = 1.9, for
a finite system size N = 215. We compare the conducting case without impurities (0 random), with the case with one or more impurities (n random). The introduction of
one or more impurities (n random), produces a relevant jump from conducting state (Λ � 1) to a non-conducting state (Λ < 1).
mission lines. By performing finite-size scaling, we find that the
transition is not a finite-size effect, because we were able to calcu-
late each critical map b parameter at the thermodynamics limit bc

for every correlation exponent α. With these data we obtained the
phase diagram for the symmetric ternary map, which is the fun-
damental result of this work. In addition, the asymmetric ternary
map presents a great sensibility to any change in the long-range
correlated sequence of capacitances, because any minimal alter-
ation of the original sequence produces a drastic decrease in the
normalized localization Λ(b, N), which means that the classical
dual transmission line jumps from conducting to non-conducting
state in certain cases. This is an interesting effect that can be used
in secure communication.
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