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Abstract

In this Letter we present the reductions arising from the classical Lie symmetries of a Lax pair in 2+ 1 dimensions. We
obtain several interesting reductions and prove that, by analyzing not only a PDE but also its associated linear prob
possible to obtain the reduction of the PDE together with the reduced Lax pair. Specially relevant is the fact that the
parameter in 1+ 1 dimensions appears as a natural consequence of the reduction itself and is related to the symme
2+ 1 eigenfunction.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The identification of the Lie symmetries of a given partial differential equation (PDE) is an instrument
mary importance in order to solve such an equation[1]. A standard method for finding solutions of PDEs is tha
reduction using Lie symmetries: each Lie symmetry allows a reduction of the PDE to a new equation with th
ber of independent variables reduced by one[2,3]. In a certain way this procedure gives rise to the ARS conjec
[4] which establishes that a PDE is integrable in the Painlevé sense[5] if all its reductions pass the Painlevé te
[6]. This means that solutions of a PDE can be achieved by solving its reductions to ordinary differential eq
(ODE). Classical[1] and nonclassical[2,3] Lie symmetries are the usual way for identifying the reductions.
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Nevertheless, let us recall that there are some methods for solving PDEs that are more effective in 2+ 1 than in
1+ 1 dimensions[7]. A good example of this is the following equation in 2+ 1 dimensions

(1)

[
hxxz − 3

4

(
h2

xz

hz

)
+ 3hxhz

]
x

= hyz,

which some of us have studied in a recent paper[7] proving that the singular manifold method[6] is a very effective
method for solving the equation. It is quite straightforward to determine the associated linear problem thro
method. In fact, for(1) we obtained the following Lax pair:

(2)−ψy + ψxxx + 3hxψx + 3

2
hxxψ = 0, 2hzψxz − hxzψz + 2h2

zψ = 0.

Notice that there are a lot of papers related with the reduction of 2+ 1 equations through the classical Lie meth
but the application of this method to the Lax pair is much less frequent[8]. Nevertheless we consider that f
integrable equations, it is of primary importance to determine the reduction, not only of the equation, bu
Lax pair. Actually the reduction process should introduce a spectral parameter that is absolutely essentia+ 1
dimensions. Therefore, our plan in this Letter is to a certain extent exactly the opposite of the usual appro
try to obtain 1+ 1 spectral problems arising from a 2+ 1 Lax pair. Once we have solved the problem in 2+ 1
dimensions in[7], in the sense that we have determined its Lax pair, we shall identify the classical symm
of the Lax pair[8]. This is done in Section2. In Section3 we use these symmetries to obtain a reduced Lax
in 1 + 1 dimensions whose compatibility condition should be a reduction of(1). Actually, there are five possibl
reductions. Two of them yield linear equations that can be easily integrated. The other three reductions yie+ 1
spectral problems that include, as particular cases, well-known equations such as the modified Korteveg–
Drinfel’d–Sokolov or Ermakov–Pinney equations. It is interesting to note that each of these reductions
respectivelytwo, three and fourth order spectral problems which exhibit a spectral parameter as a natural output
of the Lie method. We close with a section of conclusions.

2. Classical symmetries

In order to apply the classical Lie method to the system of PDEs(2) with three independent variables and tw
fields, we consider the one-parameter Lie group of infinitesimal transformations inx, y, z,h,ψ , given by:

x′ = x + εξ1(x, y, z,h,ψ) + O
(
ε2), y′ = y + εξ2(x, y, z,h,ψ) + O

(
ε2),

z′ = z + εξ3(x, y, z,h,ψ) + O
(
ε2), h′ = h + εφ1(x, y, z,h,ψ) + O

(
ε2),

(3)ψ ′ = ψ + εφ2(x, y, z,h,ψ) + O
(
ε2),

whereε is the group parameter. It is therefore necessary that this one transformation leaves the set of s
of (2) invariant. This yields an overdetermined linear system of equations for the infinitesimalsξ1(x, y, z,h,ψ),
ξ2(x, y, z,h,ψ), ξ3(x, y, z,h,ψ), φ1(x, y, z,h,ψ) andφ2(x, y, z,h,ψ). The associated Lie algebra of infinites
mal symmetries is the set of vector fields of the form:

(4)X = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂z
+ φ1

∂

∂h
+ φ2

∂

∂ψ
.

By applying the classical method[1] to the system of PDEs(2), we obtain the following system of determinin
equations (we have used MACSYMA and MAPLE independently to handle the calculations):

0= ∂ξ1

∂z
= ∂ξ1

∂h
= ∂ξ1

∂ψ
= ∂ξ2

∂x
= ∂ξ2

∂z
= ∂ξ2

∂h
= ∂ξ2

∂ψ
= ∂ξ3

∂x
= ∂ξ3

∂y
= ∂ξ3

∂h
= ∂ξ3

∂ψ
,
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0= ∂φ1

∂z
= ∂2φ1

∂h2
= ∂φ1

∂ψ
= ∂φ2

∂z
= ∂φ2

∂h
= ∂2φ2

∂ψ2
,

0= ∂2φ2

∂x ∂ψ
− ∂2ξ1

∂x2
= ∂2φ1

∂x ∂h
− 2

∂2φ2

∂x ∂ψ
= ∂ξ1

∂x
+ ∂φ1

∂h
= 3

∂ξ1

∂x
− ∂ξ2

∂y
,

0= φ2 + ψ

(
∂φ1

∂h
− ∂φ2

∂ψ
+ ∂ξ1

∂x

)
= ∂ξ1

∂y
− ∂3ξ1

∂x3
+ 3

∂3φ2

∂x2 ∂ψ
+ 3

∂φ1

∂x
,

0= 2
∂φ2

∂x
+ ψ

(
2

∂2φ1

∂x ∂h
− ∂2ξ1

∂x2

)
= −2

∂φ2

∂y
+ 2

∂3φ2

∂x3
+ 3ψ

∂2φ1

∂x2
,

whose solution is:

ξ1 = −2
dA1(y)

dy
x − 3

2
A2(y), ξ2 = −6A1(y), ξ3 = β(z),

(5)φ1 = 1

3

d2A1(y)

dy2
x2 + 1

2

dA2(y)

dy
x + A3(y) + 2

dA1(y)

dy
h, φ2 =

(
λ + dA1(y)

dy

)
ψ.

Note that the corresponding Lie symmetry algebra depends on threeA1, A2 andA3 arbitrary functions ofy and
an arbitrary functionβ(z) of z. The only constant that appears in(5) is λ that, as we shall show in the next sectio
plays the role of the spectral parameter in the 1+ 1 reductions of(2).

Having determined the infinitesimals of(3) in (5), the symmetry variables are found by solving the invari
surface conditions

(6)Φ1 ≡ ξ1
∂h

∂x
+ ξ2

∂h

∂y
+ ξ3

∂h

∂z
− φ1 = 0, Φ2 ≡ ξ1

∂ψ

∂x
+ ξ2

∂ψ

∂y
+ ξ3

∂ψ

∂z
− φ2 = 0

or the corresponding characteristic equations

(7)
−dx

2dA1
dy

x + 3
2A2

= −dy

6A1
= dz

β
= dh

1
3

d2A1
dy2 x2 + 1

2
dA2
dy

x + A3 + 2dA1
dy

h
= dψ(

λ + dA1
dy

)
ψ

.

In the next section we solve(7) for the different possibilities.

3. Reductions

There are five independent reductions that we determine in the following way:

Case 1. A1 �= 0, β �= 0.
Integration of(7) provides the reduced variables:

(8)z1 = x

A
1/3
1

− 1

4

∫
A2

A
4/3
1

dy, z2 = 6
∫

1

β
dz +

∫
1

A1
dy

and the following reduction for the fields

(9)ψ(x, y, z) = e
− λ

6

∫ dy
A1

A
1/6
1

G(z1, z2),

(10)h(x, y, z) = 1

A
1/3
1

U(z1, z2) − 1

6A
1/3
1

∫
A

1/3
1 M(z1, y) dy,
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whereM(z1, y) is the function

M(z1, y) =
(

d2A1

dy2

1

3A
1/3
1

)
z2

1 +
(

dA2

dy

1

2A
2/3
1

+ d2A1

dy2

1

6A
1/3
1

∫
A2

A
4/3
1

dy

)
z1

(11)+ d2A1

dy2

1

48A1/3
1

(∫
A2

A
4/3
1

dy

)2

+ dA2

dy

1

8A
2/3
1

∫
A2

A
4/3
1

dy + A3

A1
.

Substitution of the reduction ansatz(8)–(10)in (2) gives us:

(12)0= Gz1z1z1 − Gz2 + 3Uz1Gz1 + 3

2
Uz1z1G + λ

6
G,

(13)0= 2Uz2Gz2z1 − Uz2z1Gz2 + 2U2
z2

G.

Solving(12) for Gz2 and substituting in(13), we obtainthe fourth order spectral problem:

(14)Gz2 = Gz1z1z1 + 3Uz1Gz1 + 3

2
Uz1z1G + λ

6
G,

(15)

Uz2Gz1z1z1z1 = 1

2
Uz2z1Gz1z1z1 − 3Uz1Uz2Gz1z1 +

(
3

2
Uz1Uz2z1 − λ

6
Uz2 − 9

2
Uz1z1Uz2

)
Gz1

+
(

λ

12
Uz2z1 − U2

z2
− 3

2
Uz1z1z1Uz2 + 3

4
Uz1z1Uz2z1

)
G,

whose compatibility condition gives us the 1+ 1 equation

(16)

(
Uz2z1z1 − 3

4

U2
z2z1

Uz2

+ 3Uz2Uz1

)
z1

= Uz2z2

that can be written as the following nonlocal KdV equation[9], proposed by Drinfel’d and Sokolov[10].

(17)−Pz2 + Pz1z1z1 + 2PVz1 + 4V Pz1 = 0, Vz2 = −3

4

(
P 2)

z1
,

where we have done the change

(18)Uz1 = 4

3
V, Uz2 = −P 2.

Case 2. A1 �= 0, β = 0.
Integration of(7) provides the reduced variables:

(19)z1 = x

A
1/3
1

− 1

4

∫
A2

A
4/3
1

dy, z2 = z

and the reduction for the fields is exactly the same as inCase 1. By substituting the reduction ansatz in(2) we
obtainthe third order spectral problem:

(20)0= Gz1z1z1 + 3Uz1Gz1 + 3

2
Uz1z1G + λ

6
G,

(21)0= 2Uz2Gz2z1 − Uz2z1Gz2 + 2U2
z2

G,

whose compatibility gives us the 1+ 1 equation

(22)

(
Uz2z1z1 − 3 U2

z2z1 + 3Uz2Uz1

)
= 0.
4 Uz2 z1
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An alternative form of the above equation arises from the following definitions

(23)Uz1 = 4

3
V, Uz2 = −P 2,

which allow us to write(22)as the system

(24)PPz1z1 − P 2
z1

2
+ 2P 2V + F(z2) = 0, Vz2 = −3

4

(
P 2)

z1
,

whereF(z2) is an arbitrary function. Eq.(24) is the Ermakov–Pinney equation[11]. It has been proved in[12] that
this equation is related through a reciprocal transformation to the Degasperis–Procesi equation[13].

Case 3. A1 = 0, A2 �= 0, β �= 0.
Integration of(7) yields the following reduction:

(25)z1 = x + 3

2
A2

∫
1

β
dz, z2 = y,

(26)ψ(x, y, z) = e
(− 2λ

3A2
)x

G(z1, z2),

(27)h(x, y, z) = U(z1, z2) − 1

6

d2A2
dy2

A2
x2 − 2A3

3A2
x.

Substitution of the reduction ansatz(25)–(27)in (2) gives us:

(28)

0= Gz1z1z1 − Gz2 − 2λ

A2
Gz1z1 +

(
3Uz1 + 4λ2

3A2
2

− 2A3

A2
− dA2

dz2

z1

A2

)
Gz1

+
(

3

2
Uz1z1 − 2λ

A2
Uz1 + 4λA3

3A2
2

− 8λ3

27A3
2

− 1

2A2

dA2

dz2

)
G,

(29)0= Uz1Gz1z1 −
(

1

2
Uz1z1 + 2λ

3A2
Uz1

)
Gz1 + U2

z1
G.

Solving(29) for Gz1z1 and substituting in(28), we obtainthe second order linear system:

(30)Gz1z1 =
(

2λ

3A2
+ Uz1z1

2Uz1

)
Gz1 − Uz1G,

(31)

Gz2 =
(

4λ2

9A2
2

− U2
z1z1

4U2
z1

− λ

3A2

Uz1z1

Uz1

− z1

A2

dA2

dz2

)
Gz1 +

(
Uz1z1z1

2Uz1

+ 2Uz1 − 2
A3

A2
2

)
Gz1

+
(

4λA3

3A2
2

− 2λ

3A2
Uz1 − 8λ3

27A3
2

− 1

2A2

dA2

dz2

)
G,

whose compatibility condition yields the 1+ 1 equation

(32)

(
Uz2 − Uz1z1z1 + 3

4

U2
z1z1

Uz1

− 3U2
z1

+ 2A3

A2
Uz1 + (z1Uz1 + U)

A2

dA2

dz2

)
z1

= 0.

SettingUz1 = −P 2 we have the equation:

Pz2 − Pz1z1z1 + 6P 2Pz1 + 2A3

A2
Pz1 + 1

A2

dA2

dz2
(P + z1Pz1) = 0.
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The explicit dependence onA2 andA3 can be removed by doing the following change of variables:

T =
∫

dz2

A3
2

, X = 1

A2
z1 − 2

∫
A3

A2
2

dz2, P (z1, z2) = Q(T,X)

A2
,

that transforms the above equation in the modified Korteweg–de Vries equation

(33)QT − QXXX + 6Q2QX = 0.

Case 4. A1 = 0, A2 �= 0, β = 0.
The reduction is

(34)z1 = y, z2 = z,

(35)ψ(x, y, z) = e
− 2λ

3A2
x
G(z1, z2),

(36)h(x, y, z) = U(z1, z2) − 1

6A2

dA2

dy
x2 − 2

3

A3

A2
x,

whose substitution in(2) gives us

(37)Gz1 =
(

4λA3

3A2
2

− 8λ3

27A3
2

− 1

A2

dA2

dz1

)
G, Gz2 = 3A2

2λ
Uz2G.

The compatibility of(37)provides the linear equation

(38)A2Uz1z2 + dA2

dz1
Uz2 = 0⇒ U(z1, z2) = K1(z2)

A2
+ F1(z1),

whereF1(z1) andK1(z2) are arbitrary functions. With the aid of(38)we can integrate(37)as:

(39)G = α0
1√
A2

exp

(
3K1

2λ
+ 4λ

3

∫
A3

A2
2

dz1 − 8λ3

27

∫
1

A3
2

dz1

)
,

whereα0 is an arbitrary constant. The resulting solution for(2) is

(40)h = K1

A2
+ F1 − 1

6A2

dA2

dy
x2 − 2

3

A3

A2
x,

(41)ψ = α0√
A2

exp

(
3K1

2λ
+ 4λ

3

∫
A3

A2
2

dy − 8λ3

27

∫
1

A3
2

dy − 2λ

3A2
x

)
,

depending on two arbitrary constantsα0 andλ and five arbitrary functionsA1(y),A2(y),A3(y),F1(y), andK1(z).

Case 5. A1 = 0, A2 = 0, β �= 0.
Integration of(7) provides the following reduction:

(42)z1 = x, z2 = y,

(43)ψ(x, y, z) = e
λ

∫
dz
β G(z1, z2), h(x, y, z) = U(z1, z2) + A3

∫
dz

β
.

Substitution of the reduction ansatz(42), (43) in (2) gives us:

(44)0= Gz1z1z1 − Gz2 + 3Uz1Gz1 + 3

2
Uz1z1G, 0= λGz1 + A3G.
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The compatibility condition yields the linear equation

(45)λUz1z1z1 − 2A3Uz1z1 + 2

3

dA3

dz2
= 0

that can be easily integrated as:

U(z1, z2) = F3(z2)e
2A3
λ

z1 + 1

6A3

dA3

dz2
z2

1 +
(

λ

6A2
3

dA3

dz2
+ 1

2A3
F1(z2)

)
z1 + λ2

12A3
3

dA3

dz2
+ λ

4A2
3

F1(z2)

(46)+ 1

2A3
F2(z2),

whereF1(z2), F2(z2) andF3(z2) are arbitrary functions. Expression(46)allows us to integrate(44)as:

(47)G = α0 exp

(
−

(
3

2λ

∫
F1 dz2 + 1

λ3

∫
A3

3 dz2 + A3

λ
z1

))
,

whereα0 is an arbitrary constant. We obtain the following solution for(2):

(48)

h = F3e
2A3
λ

x + 1

6A3

dA3

dy
x2 +

(
λ

6A2
3

dA3

dy
+ 1

2A3
F1

)
x + λ2

12A3
3

dA3

dy
+ λ

4A2
3

F1 + 1

2A3
F2 + A3

∫
dz

β
,

(49)ψ = α0 exp

(
λ

∫
dz

β
−

(
3

2λ

∫
F1 dy + 1

λ3

∫
A3

3 dy + A3

λ
x

))
,

depending on two arbitrary constantsα0 andλ and six arbitrary functionsA1(y), A2(y), A3(y), F1(y), F2(y),
F3(y) andβ(z).

4. Conclusions

• A spectral problem in 2+ 1 dimensions is presented. It should be noted that this Lax pair was obtained
the Singular Manifold Method that, surprisingly, does not work properly for some 1+ 1 reductions of the
system. It is easier to solve the problem in 2+ 1 than in 1+ 1 dimensions.

• For the above reason we attempt to go from 2+ 1 to 1+ 1 dimensions by using the reductions arising from
classical Lie symmetries of the Lax pair. This means that we obtain symmetries that are symmetries
the fieldh and the eigenfunctionψ . The symmetries that we have obtained include several arbitrary func
as well as an arbitrary constant that plays the role of the spectral parameter of the reduced spectral pr

• Five possible reductions arise from the classical symmetries. Two of them yield linear equations tha
easily integrated, providing us with nontrivial solutions of(2).

• The other three reductions yield interesting Lax pairs of second, third and fourth order, respectively.
portant point is that the introduction of the spectral parameters in the 1+ 1 reductions arise in an absolute
natural way. The reduced Eqs.(16), (22) and (33)do not depend ofAi(y), β(z) which means that every dif
ferent functional form of these functions gives raise to a different solution of the 2+ 1 solutionh(x, y, z) by
means of the corresponding reduction ansatze.
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