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Abstract

In this Letter we present the reductions arising from the classical Lie symmetries of a Lax pair Inddnensions. We
obtain several interesting reductions and prove that, by analyzing not only a PDE but also its associated linear problem, it is
possible to obtain the reduction of the PDE together with the reduced Lax pair. Specially relevant is the fact that the spectral
parameter in 1 1 dimensions appears as a natural consequence of the reduction itself and is related to the symmetry of the
2+ 1 eigenfunction.
0 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The identification of the Lie symmetries of a given partial differential equation (PDE) is an instrument of pri-
mary importance in order to solve such an equafignA standard method for finding solutions of PDEs is that of
reduction using Lie symmetries: each Lie symmetry allows a reduction of the PDE to a new equation with the num-
ber of independent variables reduced by fih8]. In a certain way this procedure gives rise to the ARS conjecture
[4] which establishes that a PDE is integrable in the Painlevé §6h#eall its reductions pass the Painlevé test
[6]. This means that solutions of a PDE can be achieved by solving its reductions to ordinary differential equations
(ODE). Classicall] and nonclassicd®,3] Lie symmetries are the usual way for identifying the reductions.

* Corresponding author.
E-mail address: pilar@usal.e¢P.G. Estévez).

0375-9601/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2005.05.089


http://www.elsevier.com/locate/pla
mailto:pilar@usal.es

P.G. Estévez et al. / Physics Letters A 343 (2005) 4047 41

Nevertheless, let us recall that there are some methods for solving PDESs that are more effectivetiag in
1+ 1 dimensiong7]. A good example of this is the following equation irt2l dimensions

3 h?
[hxxz - Z(f) + 3hxhzi|x = hyzs (1)

which some of us have studied in a recent pgpeproving that the singular manifold meth{#] is a very effective
method for solving the equation. It is quite straightforward to determine the associated linear problem through this
method. In fact, fof1) we obtained the following Lax pair:

3
—Yy + Yrers + Ve + Sho =0, 2he¥iee — heo¥e + 2h%y = 0. )

Notice that there are a lot of papers related with the reductioHol 2quations through the classical Lie method

but the application of this method to the Lax pair is much less fregi8ntNevertheless we consider that for
integrable equations, it is of primary importance to determine the reduction, not only of the equation, but of the
Lax pair. Actually the reduction process should introduce a spectral parameter that is absolutely essestial in 1
dimensions. Therefore, our plan in this Letter is to a certain extent exactly the opposite of the usual approach: we
try to obtain 14 1 spectral problems arising from a21 Lax pair. Once we have solved the problem is2
dimensions in7], in the sense that we have determined its Lax pair, we shall identify the classical symmetries
of the Lax pair[8]. This is done in Sectiof. In Section3 we use these symmetries to obtain a reduced Lax pair

in 1+ 1 dimensions whose compatibility condition should be a reductidii)ofActually, there are five possible
reductions. Two of them yield linear equations that can be easily integrated. The other three reductions field 1
spectral problems that include, as particular cases, well-known equations such as the modified Korteveg—de Vries,
Drinfel’d-Sokolov or Ermakov—Pinney equations. It is interesting to note that each of these reductions yields
respectivelytwo, three and fourth order spectral problems which exhibit a spectral parameter as a natural output

of the Lie method. We close with a section of conclusions.

2. Classical symmetries

In order to apply the classical Lie method to the system of PREwith three independent variables and two
fields, we consider the one-parameter Lie group of infinitesimal transformatians ji, %, ¥, given by:

X =x+ebr(x,y. 2. h )+ 0(e?), Y =y+etalx,y. 2. h¥)+ O(e?),
=74k, y, 2, )+ 0(?), W =h+epi(x,y, z,h, )+ O(e?),
W =y +ega(x.y, 2. h,¥) + O(?), ©)

wheree is the group parameter. It is therefore necessary that this one transformation leaves the set of solutions
of (2) invariant. This yields an overdetermined linear system of equations for the infiniteginels, z, &, ¥),
Ea(x,v,2,h,¥), &3(x, y,z, h, V), dp1(x, y,z, h,¥) andga(x, v, z, h, ¥). The associated Lie algebra of infinitesi-

mal symmetries is the set of vector fields of the form:

ad d d 0 d
X=8—+&—+&5— — —. 4
518x+§23y+§3az+¢18h+¢23¢ (4)
By applying the classical methdd] to the system of PDEE), we obtain the following system of determining
equations (we have used MACSYMA and MAPLE independently to handle the calculations):

oL Yo _ 08 _ 08 06 06 38 0k & _ 3k _ & _ &
9z dh 3y ax 8z ok oy ox dy oh oy’
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3z oh2  ay 9z  oh  oy?’
042 9% _ 0°¢1 0% _ 061 01 _ 981 9%

T 9xdy  o0x2  axoh oxay  ox | ok ax  dy’
0p1 A2  0&1\ &1 0%  , 3¢, 0¢1

0= — - L) == 243 3=,
& J”/f(ah 31//+ ) dy  ox3 ax23¢+ ax

d¢2 <82¢1 ﬁ) a2 332 0°¢1

_0p1 _ 0%y _ 3¢y _ d¢a _ 02 _ 9%¢o

0= 2— — =-2—- 2— 3 ,
v axoh  9x? dy + 9x3 + I//8)62

whose solution is:

dA 3
=200 a0, B=-6A10),  E&=H)
y 2
1d241(y) 5 1dAz(y) dA1(y) B dA1(y)
¢1 3 dy + E dy X+ A3(y) + 2 dy ]’l, ¢2 = ()» + T)W (5)

Note that the corresponding Lie symmetry algebra depends on #reé, and A3 arbitrary functions ofy and
an arbitrary functiorg (z) of z. The only constant that appearq¥%) is A that, as we shall show in the next section,
plays the role of the spectral parameter in the 1 reductions of2).

Having determined the infinitesimals (8) in (5), the symmetry variables are found by solving the invariant
surface conditions

oh oh oh oY oY oy
¢1—$1—+§2— &3 — —¢1=0, Pr=8&1— +&— +&— —¢2=0 (6)
0z 0x dy 0z
or the corresponding characteristic equations
—dx —dy dz dh dy
2dA1 34, BAL B 1d2A X2 4 LdAz dAl Ay )
x+ 342 1 § G2+ 32 4 A+ 292 (A+ S

In the next section we soly&) for the different possibilities.

3. Reductions
There are five independent reductions that we determine in the following way:

Casel A1#0,8+#0.
Integration of(7) provides the reduced variables:

11=#—%/%d% zz=6/%dz+/Aildy (8)
and the following reduction for the fields
AJ* dv
Vx,y,2)= Al/e G(Zla 22), 9)

1 1 1/3
h(x,y,2) = ﬁU(Zl,Zz) - —1/3/141/ M(z1,y)dy, (10)
Al 6AL
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whereM (z1, y) is the function

d?A; 1 dA, 1 d?A, 1 Ao
M(z1, Y)=( )Z%‘f‘( + / 4/3 dy)“
1

dy? 347/° dy 2433 dy? 6A7% ) A
d?A,7 1 A 2 dA, 1 A As
d ——= | —=dy+—. 11
Ty 48A}/3</A‘1‘/3 y) Ty 8A§/3/A‘1‘/3 YT ()
Substitution of the reduction ansd®&—(10)in (2) gives us:
3 A
0=Gzz9z1 — Gz, +3U;, G + EUsz + EG’ (12)
0=2U;,G 52y — Uzyzy Gz, + 2U%G. (13)
Solving(12) for G, and substituting irf13), we obtainthe fourth order spectral problem:
3 A
G, =Gz +3U;,Go + EUZmG + EG’ (14)
1 3 A 9
U226Z121Z111 = EU2211G21Z121 - 3UZ1 UZ2G1111 + EUZ1U22Z1 - éUzz - 5U1121 UZ2 GZl
A 3 3
+ <1_2Uzzzl - Uzzz o 5U11Z111 Uz, + ZU11Z1 U1211>Gv (15)
whose compatibility condition gives us theil1 equation
3U2
<U2221Z1 - Z [;211 + 3U22U21> = Uzzzz (16)
72 71
that can be written as the following nonlocal KdV equaltj®h proposed by Drinfel'd and Sokold0].
3
_P12+P211121+2PV21+4VP21=0’ szz_Z(P2)21a (17)
where we have done the change
4 2
Uy =3V, U, =—P% (18)
Case2. A1 #0,8=0.
Integration of(7) provides the reduced variables:
by l/ Ao
1= — = | = dy, 2=z (19)
Ai/S 4 A‘1‘/3

and the reduction for the fields is exactly the same aSare 1 By substituting the reduction ansatz () we
obtainthe third order spectral problem:

3 A
0= Gz1z1z1 + 3U11G11 + EUuuG + éGv (20)
0=2U,Gp; — Uzpy G, + 2U2,G, (21)

whose compatibility gives us thef11 equation

302
(Umlzl ~2 52“ + 3UZZU21> =0. (22)
22 21
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An alternative form of the above equation arises from the following definitions

Uy=3V, Up= —-P?, (23)
which allow us to writg22) as the system
2
_ P ope _ __3(p2
PPrysy — =+ + 2PV + F(z2) =0, Ve, = 4(P )., (24)

whereF (z) is an arbitrary function. Eq24)is the Ermakov—Pinney equati¢hl]. It has been proved if12] that
this equation is related through a reciprocal transformation to the Degasperis—Procesi gj@htion

Case3. A1=0,A42#0,8#0.
Integration of(7) yields the following reduction:

3 1
= —As | =d = 25
21 x+22//3 z, 2=y, (25)
(—&5)x
Y(x,y,2)=e 27 G(z1,22), (26)
d?Ag 24
dy2 o 3
hx,y,z2)=U(z1,22) — = - —x. 27
.y, 2)=UGk122) ~ ¢ a5 34, (27)
Substitution of the reduction ansd25)—(27)in (2) gives us:
2) 42 243 dAryn
0=G -G, ——G 3U ——— = ——|G
212121 <2 AZ <121 + < <1 + 3A§ A2 dZZ AZ) <1
3 2% 4.A3 8.3 1 dAz)
+\ Uy ——Upy+—5 — —5 — ——— 28
(2 TUA T 343 2743 242 dz (28)
1 2\ 2
0= U11G2111 - (EUuZl + @U21>GZ1 + UzlG' (29)
Solving(29)for G,., and substituting if28), we obtainthe second order linear system:
2. U
Gois = (g5 + 52 )Gos — UG (30)
Mm2  U? AU 21 dAz U Az
G Y 21za ™ 7121 _ el Fre G 212121 2U _ 2_ G
2 (9A§ 4UZ  3A2 U, Axdzm) ™ * 2U;, a Az) "
4 A3 2x 813 1 dA;
(—2——011——3——— : (31)
345 342 27A3 2Az dz
whose compatibility condition yields the4 1 equation
3UZ 2A3 (22U, +U) dAz
U, - U, Saa_g3p? + ==yp a4 T ) =0 32
( 2 i 4 U, at Ay - A2 dz2 ), 42

SettingU,, = — P2 we have the equation:

2A3 1 dAs
P, — P, +6P?P, +—=P, +

— —=(P +2z1P,)=0.
A2 1 A2 dZZ( + 21 Zl)
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The explicit dependence ot and A3 can be removed by doing the following change of variables:

o(T, X)
Ay

dzo
T=["s —_z1— —dzz, P(z1,72) =

A

2

that transforms the above equation in the modified Korteweg—de Vries equation
Or — Oxxx +60%Qx =0. (33)

Case4. A1=0,A2#0,8=0.
The reduction is

1=y, 2=2, (34)
2
Y(x.y.2) =e 2" G(z1.22), (35)
1 dA; , 2A3
h =U(1,22) = o ——x" = 5 =X, 36
(x,y,2) =U(z1,22) 6A; dy © 34, (36)

whose substitution if2) gives us

4)A3 83  1dA; 3A2
G.. — - -4 G, = —=U,G. 37
@ ( 3A§ 27A§ Ao dzl) 2T 37)
The compatibility of(37) provides the linear equation
dA 2 1(22)
A2Uz112 + — dz1 zz =0= U(z1,22) = A + F1(z1), (38)
whereF1(z1) andK1(z2) are arbitrary functions. With the aid (88) we can integrat€37) as:
1 3K1 4 83 1
G_ao—exp(— + = —2d _/_del>’ (39)
VA 25 3J A3 271 ) A3
whereag is an arbitrary constant. The resulting solution {@yis
K1 1 dAy , 2A3
h=—+4+F———x“— -—x, 40
Ao + 6A2 dy * 3A2x (40)
@ 3K1 4 813 / 1 21
=——exp| — d d , 41
V=5 p(2x+3 Azy 27) 37 34" (41)

depending on two arbitrary constassanda and five arbitrary functiond1(y), A2(y), A3(y), F1(y), andK1(z).

Caseb. A1 =0,42=0,8+#0.
Integration of(7) provides the following reduction:

=X, 2=y, (42)
)»fﬂ dz
vx,y,z)=e"’ BG(z1,22), h(x,y,z)zU(zl,zz)+A3/E. (43)

Substitution of the reduction ansd#2), (43)in (2) gives us:

3
0=Gyyzyz; — G2, +3U;,G,, + EUZ121G’ 0=AG; + A3G. (44)



46 PG. Estévez et al. / Physics Letters A 343 (2005) 40-47

The compatibility condition yields the linear equation

2dA3
AMUzz0z0 — 2A3Uz 7 + = 3 dzz =0 (45)
that can be easily integrated as:
Ui = Fsee P g 2 A2 (hdha 1 g Ny B A A
s = e r» ° —_—
1 r2) = sl 6Asdzz * \6AZdzz | 243 N 2)T 123 dz, T aal M
1
—F 46
* o 2(z2), (46)
whereF1(z2), F2(z2) and F3(z2) are arbitrary functions. Expressi¢f6) allows us to integratét4) as:
3 1 A
G:oeoexp< ( / Fidzo+ — /Agdzz—i-—gzl)), (47)
2\ A
whereag is an arbitrary constant. We obtain the following solution (@
th;xgledAgz /\dA3+1 +A2dA3+A +1F+A dz
3¢ 643 dy 6A2 dy | 243 1) 1243 dy ' 4A2 o fetas

(48)

d 3 1 A
x/fzaoexp<)»/?z— (ZA/ Fidy + — /AgderT?’x)), (49)

depending on two arbitrary constanig and A and six arbitrary functiong\1(y), A2(y), A3(y), F1(y), F2(y),
F3(y) andB(z).

4, Conclusions

e A spectral problem in 2- 1 dimensions is presented. It should be noted that this Lax pair was obtained using
the Singular Manifold Method that, surprisingly, does not work properly for somellreductions of the
system. It is easier to solve the problem is2 than in 14+ 1 dimensions.

e For the above reason we attempt to go from 2to 1+ 1 dimensions by using the reductions arising from the

classical Lie symmetries of the Lax pair. This means that we obtain symmetries that are symmetries of both
the fieldz and the eigenfunctiogy. The symmetries that we have obtained include several arbitrary functions
as well as an arbitrary constant that plays the role of the spectral parameter of the reduced spectral problems.
Five possible reductions arise from the classical symmetries. Two of them vyield linear equations that can be
easily integrated, providing us with nontrivial solutiong®}.

The other three reductions yield interesting Lax pairs of second, third and fourth order, respectively. An im-
portant point is that the introduction of the spectral parameters in thé teductions arise in an absolutely
natural way. The reduced Ed4.6), (22) and (333lo not depend ofi; (y), 8(z) which means that every dif-

ferent functional form of these functions gives raise to a different solution of thd 2olutioni(x, y, z) by

means of the corresponding reduction ansatze.
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