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Abstract. We present the exact diagonalization of the Schrödinger operator corresponding to a periodic
potential with N deltas of different couplings, for arbitrary N . This basic structure can repeat itself an
infinite number of times. Calculations of band structure can be performed with a high degree of accuracy
for an infinite chain and of the correspondent eigenlevels in the case of a random chain. The main physical
motivation is to modelate quantum wire band structure and the calculation of the associated density of
states. These quantities show the fundamental properties we expect for periodic structures although for
low energy the band gaps follow unpredictable patterns. In the case of random chains we find Anderson
localization; we analize also the role of the eigenstates in the localization patterns and find clear signals of
fractality in the conductance. In spite of the simplicity of the model many of the salient features expected
in a quantum wire are well reproduced.

PACS. 03.65.-w Quantum mechanics – 71.23.An Theories and models; localized states –
73.21.Hb Quantum wires

Introduction

Quantum wires represent the dreamed idea of make a con-
ductor wire as small as a molecule. The idea that macro-
scopic devices we have been using for years can actually
be built in nature at the nanoscale size goes back to Feyn-
man and is the basis of all work currently carried out in
the field of Quantum Electronics. This area of research is
not only interesting in itself from the fundamental point of
view but has also profound implications in applied physics
and material sciences as hundreds of experiments are be-
ing carried out nowdays with a high degree of success.
The purpose of this paper is to show that some of the
ideas underlying the actual development of different types
of quantum wires can actually be modelled in quite a sim-
ple manner using elementary quantum mechanics. This is
specially important from our point of view as it provides
a bridge between current fundamental research and ba-
sic concepts of quantum mechanics which are usually the
subject of graduate standard programs.

The aim to modelate a simple one-dimensional solid in
order to study its band structure goes back to Kronig and
Penney in the thirties [1] but since then much work has
been done along the lines of this first seminal reference. A
sample of the variety of models that can be constructed
with the same ideas can be found in [2]. As the main in-
terest of almost all of these authors was band theory, the
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techniques used in all these papers were mainly addressed
to semiconductor physics [3]. Much more recently a re-
vival of the same models and techniques [4] has arisen as
a consequence of the interest in truly theoretical and ex-
perimental one-dimensional physical systems from which
quantum wires are just only one example [5]. Right now
the research in molecular conductances, one-dimensional
metallic rings and other devices of the same sort lends sup-
port to the idea of generalizing old methods yielding exact
analytic solutions coupled to the use of desk-top computer
algebra.

Here firstly we shall solve analytically the band struc-
ture of an infinite periodic chain of delta potentials each
one with a different coupling inside the primitive cell pay-
ing mostly attention to the mathematical aspects. After
studying the band structure of the chain one can introduce
randomness boosted by quantum fluctuations in order to
account for localization. Fortunately the model seems rich
enough to yield more information such as the generaliza-
tion of the Saxon-Hutner conjecture [6] and even scaling
exhibited as fractal behaviour of the conductance [7]. The
paper will be organized as follows. In Section 1 we shall
present the analytic solution of the periodic case of in-
finite different delta potentials. The band structure of this
one dimensional periodic potential will also be briefly dis-
cussed. In Section 2 we turn our attention to the case
of random arrays of one dimensional delta potentials
with different couplings. Here we discuss the density of
states using the functional equation method and classify
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the different types of localization appearing when disor-
der is present. As we have been able to increase our un-
derstanding of localization to the extent of detecting uni-
versality effects, we shall entirely devote the Section 3 to
the discussion of fractality in the conductance and the dif-
ferent checkings we have managed to perform in order to
ascertain ourselves and try to convince the reader that the
effect is present even in this extremely simple model. We
close with a section of conclusions.

1 Periodic array

Let us consider an electron in a periodic one dimensional
chain of atoms modelled by the potential constituted by
an array of N delta functions each one with its own cou-
pling e2

i , (i = 1, 2, ...N). After finishing the N -array, the
structure repeats itself an infinite number of times. The
number of species N , can be arbitrarily large but finite.
The case N=1 is an old textbook exercise but may be
convenient to be revisited [8] for taking a full profit of our
general results. The generalization can thus be followed
in a more straightforward manner. The relevant primitive
cell (p.c.) for N = 2 can be represented for the following
set of wavefunctions:

p.c.

{
Ψ1(x) = A1eikx + B1e−ikx 0 ≤ x < a

Ψ2(x) = A2eik(x−a) + B2e−ik(x−a) a ≤ x < 2a

Ψ3(x) = e2iQa
[
A1eik(x−2a) + B1e−ik(x−2a)

]
.

The matrix relating the amplitudes of the above wave
functions for this N = 2 case can be written as:


eika e−ika −1 −1
−ikeika ike−ika

(
ik − 2

a1

)
−
(
ik + 2

a1

)
−F2 −F2 eika e−ika(

ik − 2
a2

)
F2 −

(
ik + 2

a2

)
F2 −ikeika ike−ika




(1)

It is trivial to generalize these two steps to the case of
three species (i.e. N = 3). One can equally write the cor-
respondent matrix in the form:

see equation (2) above

where in all of the above cases, we have used the notation
FN = exp{iNQa} and Q ∈

[
− π

Na , π
Na

)
, and we shall also

be using the length of each species, defined as ai =
�

2

me2
i

.

One can now proceed to the generalization of the matrix
form for general number N of species just by defining the
following 2×2 matrices:

E =

(
eika e−ika

−ikeika ike−ika

)
;Aj =

(
−1 −1(

ik − 2
aj

)
−
(
ik + 2

aj

)) ·

(3)

The matrices for N = 2 and N = 3 species given by (1)
and (2) can now be put in a more compact form with the
help of the E and Aj as:

(
E A1

A2F2 E

)
4×4

;




E A1 02×2

02×2 E A2

A3F3 02×2 E




6×6

. (4)

It is now relatively simple to guess that the general form
of a matrix for N species must be written as:




E A1 02×2 . . . . . . . . . . . . . . . 02×2

02×2 E A2 02×2 . . . . . . . . . 02×2

... 02×2 E A3 02×2 . . . . 02×2

...
... 02×2

. . . . . . . . .
...

...
...

...
. . . . . . . . . 02×2

02×2

...
...

. . . E AN−1

FAN 02×2 02×2 . . . . . . . . . 02×2 E




2N×2N

. (5)

So far nothing very exciting has happened except that one
can write the matrices in a compact, logic and generaliz-
able way. And in fact without further steps the progress
would have not been certainly remarkable. The real break-
through arises when one realizes that one has to deal with
the determinants equated to zero of these matrices in order
to learn something about the band condition of this one
dimensional N-species quantum periodic structure. Let us
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• N even

B(ε; a1, . . . , aN) = 2N−1
	
P

hi...(N)...hk − 2N−3
	
P

hi...(N − 2)...hk + 2N−5
	
P

hi...(N − 4)...hk

− . . . (−1)
N
2 −1 2

	
P

hi...(2)...hk + (−1)
N
2 (8)

• N odd

B(ε; a1, . . . , aN) = 2N−1
	
P

hi...(N)...hk − 2N−3
	
P

hi...(N − 2)...hk + 2N−5
	
P

hi...(N − 4)...hk

− . . . (−1)
N−3

2 22
	
P

hi...(3)...hk + (−1)
N−1

2 (h1 + h2 + h3 + . . . + hN). (9)

define the following function (ε = ka)1:

hi(ε) = cos(ε) +
(

a

ai

)
sin(ε)

ε
· (6)

A quite simple computer algebra calculation shows that
the determinant equated to zero of (1), which belongs to
the N = 2 case, can be written in terms of these func-
tions as

cos(2Qa) = 2 h1h2 − 1.

And the determinant of the N = 3 matrix given by (2)
can also be calculated to yield:

cos(3Qa) = 4 h1h2h3 − (h1 + h2 + h3).

Below, the cases N = 4, 5, 6 and 7 are explicitely listed,
using the generalized matrix (5) for each case and calcu-
lating the determinant equated to zero with the help of
the h(ε) functions (6). The result is:

cos(4Qa) = 8 h1h2h3h4 − 2
(
h1h2 + h1h4

+ h2h3 + h3h4

)
+ 1

cos(5Qa) = 16 h1h2h3h4h5 − 4
(
h1h2h3 + h1h2h5

+ h1h4h5 + h2h3h4 + h3h4h5

)
+
(
h1 + h2 + h3 + h4 + h5

)
cos(6Qa) = 32 h1h2h3h4h5h6 − 8

(
h1h2h3h4 + h1h2h3h6

+h1h2h5h6 +h1h4h5h6+h2h3h4h5 +h3h4h5h6

)
+2
(
h1h2

+h1h4+h1h6+h2h3+h2h5+h3h4+h3h6+h4h5+h5h6

)
−1

cos(7Qa) = 64 h1h2h3h4h5h6h7 − 16
(
h1h2h3h4h5

+ h1h2h3h4h7 + h1h2h3h6h7 + h1h2h5h6h7 + h1h4h5h6h7

+h2h3h4h5h6+h3h4h5h6h7

)
+4
(
h1h2h3+h1h2h5+h1h2h7

+h1h4h5 +h1h4h7 +h1h6h7 +h2h3h4 +h2h3h6 +h2h5h6

+ h3h4h5 + h3h4h7 + h3h6h7 + h4h5h6 + h5h6h7

)
−
(
h1 + h2 + h3 + h4 + h5 + h6 + h7

)
.

1 Notice that for negative energies ε takes pure imaginary
values that we represent in the figures in the negative part of
the spectrum.

We have been able to proof by induction that the general
form of the N species case can be given as:

cos(NQa) = B(ε; a1, . . . , aN) (7)

see equations (8–9) above

All what remains is to define the symbol
∑

P hi...(M)...hk

which means the sum of all possible products of M different
hi’s with the following rule for each product: the indices
must follow an increasing order and to an odd index must
always follow an even index and reciprocally.

The band structure provided by (8) and (9) is not just
exact but also extremely useful from the point of view of
computer algebra calculations. In fact we have carried out
various profiles for the curves provided for these conditions
until N = 30 or more using just few seconds of a lap-top
regular computer. The reason for that lies mainly in the
systematic use of the form, products and combinations
of the h(ε)-function defined by (6). As examples of what
has just been said we list in Figure 1 a series of band
curves for large number of species and various values of
the parameter

(
a
ai

)
, defining the characteristic value of

the h(ε)-function. One can observe also the unpredictable
set of allowed bands which appear at low energies. This
pattern increases its unpredictibility with the number of
species.

Once the band condition is known, one can write the
distribution of electronic states in a very simple form. In
one dimension the density of states per unit length of the
chain for the nth band comes from,

gn(ε) =
1
2π

∑
Q

∣∣∣∣dε(Q)
dQ

∣∣∣∣−1

(10)

where the sum is over all the first Brillouin zone (1BZ)
points Q with the same energy ε. Due to the parity of
cos(NQa) the number of points with the same value of ε
in the 1BZ is always 2, and provided that overlapping of
neighbouring bands is not possible in this system, we can
write the density of states as

g(ε) =
1
π

∣∣∣∣dQ(ε)
dε

∣∣∣∣ (11)



242 The European Physical Journal B

(a) Six species
�

a
ai

�
: 2, 2.5, 1, 1.5, −1, −2. (b) Ten species

�
a
ai

�
: 1, 2, 3, −1, −2, −3,0.5, −0.5, 2, 1.

Fig. 1. Band condition (thick lines mark the allowed energies and the upper small boxes show the whole image of B(ε)) and
band structure in 1BZ (vertical diagram) for a periodic chain with different configurations of the primitive cell.

(a) Two species
�

a
ai

�
: −0.3, −0.9. (b) Four species

�
a
ai

�
: −3, −5, −6, −4.

Fig. 2. Density of electronic states for different configurations of the primitive cell.

inside the permitted bands. From (7) a trivial calculation
leads to,

G(ε) ≡ g(ε)a =

[
1 − B2

]− 1
2

Nπ

∣∣∣∣dB(ε)
dε

∣∣∣∣ (12)

where G(ε) is the density of electronic states per atom.
Figure 2 shows some examples of the characteristic form
of the distribution of states for different configurations of
the primitive cell.

2 Random chains

The structures one can observe in Nature hardly show a
perfect periodicity. Even in the laboratory it is a difficult

task to grow a crystal free of impurities, vacancies or dislo-
cations. We shall now treat the presence of substitutional
disorder in one dimensional delta-potential chains, that is
we consider a chain of equally spaced deltas in which the
sequence of different species does not obey a periodic pat-
tern. This model has been mainly studied regarding the
vibrational spectrum [2], paying less attention to its elec-
tronic density of states [9]. For the purpose of studying
quantum wires the relevant behaviour we want to analize
lies more in the latter than in the former physical property.

2.1 Energy gaps

The Saxon and Hutner conjecture [6] was proved by
Luttinger for the case of binary chains [10]. We have been
able to extend it to the general case. A detailed calculation
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• N even

A(ε; a1, . . . , aN) = 2N (h1 · . . . · hN ) − 2N−2
	′

P

hi...(N − 2)...hk + 2N−4
	′

P

hi...(N − 4)...hk

− . . . (−1)
N
2 −1 22

	′

P

hi...(2)...hk + (−1)
N
2 (16)

• N odd

A(ε; a1, . . . , aN) = 2N−1(h1 · . . . · hN ) − 2N−3
	′

P

hi...(N − 2)...hk + 2N−5
	′

P

hi...(N − 4)...hk

− . . . (−1)
N−3

2 22
	′

P

hi...(3)...hk + (−1)
N−1

2 (h1 + h3 + h5 + . . . + hN−2 + hN ) (17)

following the line of Schmidt [11] can be found in Ap-
pendix A. The result can be easily summarized as follows:
the forbidden bands that coincide in different one species
delta chains with couplings e2

1, . . . , e2
N are also forbidden

levels in any infinite chain made up of deltas of the N
types. This conclusion can be applied to both disordered
and periodic chains. As can be seen in the calculations
the result requires the interatomic distances of the chains
involved to be constant and the same for all of them.

2.2 Eigenenergies for finite disorder chains

Let us calculate the allowed energy levels of a finite non-
periodic chain of deltas with fixed end-points boundary
conditions. The procedure to follow is the same as for
the periodic case but imposing the vanishing of the wave
function at the end-points of the chain which we locate at
one atomic distance to the left of the first delta and to the
right of the last one. The connection of the wave function
throughout the different sectors leads us to a condition for
the permitted energy levels in the form of the determinant
of a matrix equated to zero. Again these matrices can be
written in a generalizable way, so for N deltas we have




E A1 02×2 . . . . . . . . . . . . . . . 02×2

02×2 E A2 02×2 . . . . . . . . . 02×2

... 02×2 E A3 02×2 . . . . 02×2

...
... 02×2

. . . . . . . . .
...

...
...

...
. . . . . . . . . 02×2

02×2

...
...

. . . E AN

U 02×2 02×2 . . . . . . . . . 02×2 V




2(N+1)
×

2(N+1)

(13)

whith E and Aj defined in (3) and

U =
(

1 1
0 0

)
V =

(
0 0

eika e−ika

)
· (14)

We found the condition to be factorizable in terms of the
functions hj(ε) in a similar manner to that of the periodic
chain.

The eigenenergies of the system are the roots of:

sin(ε)A(ε; a1, . . . , aN ) = 0 (15)

where

see equations (16–17) above

and here the symbol
∑′

P
hi...(M)...hk means the sum of

all possible products of M different hi’s with the following
rule for each product: the first index has to be odd, the in-
dices must follow an increasing order and to an odd index
must always follow an even index and reciprocally.

From (15) we see that ε = nπ ; n ∈ N, are always
eigenvalues of any finite length disordered chain whatever
the species in it.

2.3 Density of electronic states for an infinite chain

The basic assumption concerning the electronic energies
of a random chain is that the distribution of levels con-
verges to a limiting distribution as the number of atoms
goes to infinity, which is the same for almost all atomic se-
quences (except for a fraction that goes to zero as N → ∞)
as long as the concentrations of the different species re-
main fixed. The existence of this property is needed by the
thermodynamic limit: all quantities charaterizing macro-
scopically a random infinite chain with fixed species and
concentrations cannot depend on the order of any finite-
length piece of it. The method used to obtain the density
of states in random chains is essentially due to James and
Ginzbarg [12] and Schmidt [11], who derived a functional
equation which supplies the limiting distribution for the
positive part of the spectrum. We have reconstructed and
extended the method to provide the density of states for
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all energies (Appendix B). The functional equation is,

W(ϕ) =
m∑

i=1

pi

{
W
(
T −1

i (ϕ)
)
− W

(
T −1

i (0)
)}

(18a)

W(ϕ + rπ) = W(ϕ) + r (18b)
W(π) = 1 (18c)
W(ϕ) is monotonically increasing in ϕ (18d)

where ϕ ∈ (0, π] and m is the number of species composing
the chain , pi the ith species concentration and T −1

i (ϕ)
are the functions,

T −1
i (ϕ) = arctan

(
2hi(ε) −

1
tan(ϕ)

)
(19)

with hi(ε) defined in (6). Solving (18) for different values
of the energy, the density of electronic states per atom can
be obtained from,

G(ε) =

∣∣K (ε + ∆ε
2

)
−K

(
ε − ∆ε

2

)∣∣
∆ε

(20)

where K = −
∑m

i=1 pi

[
W
(
T −1

i (0)
)]

.
We solve this equation numerically. The range of ϕ

is discretized in p equally spaced points and W is repre-
sented by its values at those points which using a selfcon-
sistent algorithm we have been able to calculate up to an
error of 10−15. Some examples of distributions for random
chains are shown in Figure 3.

The most interesting feature of the different spectra
is the localized peak structure that appears for certain
energy intervals. Those irregularities had been reported
several years ago [9,13] and now the extremely accurate
numerical algorithms dramatically confirm. Although the
general interpretation of the behaviour of the distributions
for these systems is non trivial one can say as a general rule
(and following the suggestion of Agacy and Borland [9])
that the peaked regions are remarkable in ranges of the
spectrum which are forbidden for some of the species in-
volved but not for all of them since in this latter case the
range is also not allowed for the random system. A clear
view of this explanation can be obtained by looking at a
random chain of two species A and B. In a region forbidden
for the A-type chain the allowed energies appearing in the
spectrum are due to atomic clusters involving B atoms.
As a result the A atoms surrounding these groups isolate
those energies causing the density of states to decrease
when we move in a tiny region around each of the lev-
els and therefore giving rise to a fluctuating distribution.
Thus one could reproduce the energies where the density
of states would be more prominent, from the eigenvalues
of certain atomic clusters in which the B species have a
substantial contribution as shown in Figure 4. In the (a)
example it is clear how the eigenstates clusterize around
the more peaked regions of the distribution. However one
needs to consider a huge number of clusters in order to re-
produce all the maxima due to the equal concentrations of
the species. Decreasing the B concentration we see in (b)
how the sharp points can be quite easily predicted.

(a) 2 species.
�

a
ai

�{pi} : −2{0.5},−0.25{0.5}. The dotted
line is the density of states for the ordered diatomic chain.

(b) 2 species.
�

a
ai

�{pi} : 6{0.5}, 0.5{0.5}. The dotted line
is the density of states for the ordered diatomic chain.

(c) 3 species.
�

a
ai

�{pi} : 10{0.3},−1{0.3}, −2{0.4}.

(d) 8 species.
�

a
ai

�{pi} : −0.5{0.1}, −1{0.1}, −1.5{0.1},
−2{0.1}, −2.5{0.1}, −3{0.1}, −3.5{0.1}, 4{0.3}.

Fig. 3. Distributions of electronic states for different configu-
rations of the random chain. The thick line over the abscisa axis
marks the common forbidden bands for the species composing
the array. 5001 points have been taken for ϕ and ∆ε = 4×10−3.
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(a) pA = pB = 0.5 (b) pA = 0.9, pB = 0.1

Fig. 4. Density of states for a 2 species random chain with
�

a
aA

�
= −2 and

�
a

aB

�
= −0.25 in a range forbidden for the A-type

chain. The color vertical lines indicate the position of the eigenstates of different atomic B-groups surrounded by a certain
number of A atoms. 5001 points have been taken for ϕ and ∆ε = 2 × 10−3.

Fig. 5. Distribution of states for 2 species random chains with�
a

aA

�
= 0.25 and

�
a

aB

�
= −2 in different concentrations. 3001

points have been taken for ϕ and ∆ε = 8 × 10−3.

Another feature that can be seen in the different repre-
sentations in Figure 3, is how the distribution approaches
a smoother curve that resembles the one corresponding
to a periodic chain as the energy grows: the greater the
electron’s energy the less it feels the presence of disorder.

In Figure 5, the evolution of the density of states can
be observed for a pure one species chain as we dope sub-
stitutionally with atoms of a different kind.

2.4 The degree of localization of the electronic states

Since Anderson [14] the disorder in the structures has been
accepted as the main effect responsible of the spatial lo-
calization of the eigenstates of the systems. Just few years
ago it was shown how if the disorder is correlated the lo-
calization can be suppressed for certain energies [15,16].

In 1999 the first experimental evidence that correlations
inhibit localization of states in disordered low-dimensional
systems was reported [17].

Let us check the degree of localization for the electronic
states in random chains with positive energy. What we
specifically calculate is the average logarithmic decay per
atom of the square of the envelope of the real wave func-
tion which seems an adequate quantity for such a charac-
terization [18].

In the jth sector we write:

Ψj(x) = Aj cos
(
kx − k(j − 1)a + φj

)
(21)

and we look for:

lim
N→∞

1
N

N∑
j=1

log

(
A2

j+1

A2
j

)
· (22)

The connection equations of the wave function at the bor-
ders of the different sectors imply:

A2
j+1

A2
j

= 1 +
(

2
kaj

)2

cos2(ka + φj)

−
(

2
kaj

)
sin(2ka + 2φj). (23)

Again, we will be using the functional equation to carry
out the calculation so using the phase ϕj as in Ap-
pendix B, it is just a matter of algebra to obtain:

F (ϕj , aj) ≡
A2

j+1

A2
j

= 1 +
(

2
kaj

)2 sin2(ka)
1 − 2 cos(ka) tan(ϕj) + tan2(ϕj)

+
(

2
kaj

)
2 sin(ka)

(
cos(ka) − tan(ϕj)

)
1 − 2 cos(ka) tan(ϕj) + tan2(ϕj)

(24)
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(a) 2 species
�

a
a1

�
= −2 and

�
a
a2

�
= −0.25 with equal

concentrations.

(b) 3 species
�

a
a1

�
= 10,

�
a
a2

�
= −1 and

�
a
a3

�
= −2 with

p1 = p2 = 0.3 and p3 = 0.4.

Fig. 6. Degree of localization for the electronic states (black
line) and density of states (grey line) for a random chain. 5001
points have been taken for ϕ to solve the functional equation
and ∆(ka) = 4 × 10−3.

and the same arguments appearing in the appendix lead
us to write (22) as

〈log F 〉 =
m∑

i=1

pi

∫ π

0

dW(ϕ)
dϕ

log F (ϕ, ai)dϕ. (25)

Integrating by parts and using the equations for W(ϕ),
we finally obtain:

〈log F 〉 =
m∑

i=1

pi log F (π, ai)

−
m∑

i=1

pi

∫ π

0

W(ϕ)
1

F (ϕ, ai)
dF (ϕ, ai)

dϕ
dϕ. (26)

In the Figure 6 some examples of the degree of localiza-
tion as a function of the energy are shown. As can be seen
the degree of localization has a tendency to decrease in
the peaks of the spectrum and increase in the troughs,
and for ka = nπ ; n ∈ N the states are always extended

for any chain. This last result had been already obtained
using the transfer matrix technique [19] for finite chains.
So the system with completely uncorrelated disorder can
support extended states. In fact an infinite number of iso-
lated resonances is present although mobility edge for the
electrons does not exist and therefore one cannot speak of
an Anderson transition in a strict sense for this particu-
larly simple model.

3 Fractality

Let us observe the peaked regions of the distributions. At
first sight the irregularities make the density of states ap-
pear hardly differentiable within those intervals. Would
this pattern still hold as we look deeper into the distri-
bution? Is the distribution non differentiable? In order to
answer these questions one has to improve the numeri-
cal calculation to be able to see the real density of states
in smaller energy ranges. In Figure 7 the spectrum of a
certain random chain is shown for shorter and shorter en-
ergy intervals. As can be seen as the energy domain is
made smaller and thus increasing the accuracy of the nu-
merical algorithm the distribution reveals a finer struc-
ture: new sharp points appear and the density does not
evolve smoothly. We have been extremely careful with the
numerical algorithms and we are pretty sure that the ob-
served irregularities are not due to numerical errors. For
the representations in Figure 7 we have proceeded dou-
bling the number of points taken for ϕ in order to repre-
sent the functional equation and checking the convergence
of the density of states at each step until the desired ac-
curacy (in all cases the average variation of G(ε) in the
last step relative to its domain was less than 0.75%). The
final parameters were:

points for ϕ ∆ε

Fig. 7a 5 001 7.5 × 10−4

Fig. 7b 35 001 2.5 × 10−5

Fig. 7c 150 001 2.5 × 10−6

As a final check we repeated the procedure for the same
random chain, with the same parameters but in an appar-
ently smooth region of the density of states obtaining the
results shown in Figure 8. From this we can see that the
irregularities in certain intervals of the spectrum are not
due to errors of the numerical computation.

The numerical calculation of the density of states
suggests the possibility for the distributions to show a
quasi-fractal behaviour in some energy ranges: non dif-
ferentiability for any point inside these regions and ir-
regular aspect whatever the scale. The differentiability
of the distribution is a consequence of a regular (almost
homogeneous) distribution of the states inside a small
energy interval. A clear view of the differences between
the way in which states appear inside an irregular re-
gion and a smooth region of the density can be ob-
tained representing the energy spaces for adjacent lev-
els. In Figure 9 these spacing distributions are shown
for the first 100 levels that appear inside an irregu-
lar zone and a smooth one for a finite length array.
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Fig. 7. Density of electronic states in different energy ranges
for a two species random chain

�
a
a1

�
= −2 and

�
a

a2

�
= −0.25

with equal concentrations (fractal region).

Fig. 8. Density of electronic states in different energy ranges
for a two species random chain

�
a
a1

�
= −2 and

�
a
a2

�
= −0.25

with equal concentrations (smooth region).

Fig. 9. Energy spacings for the first 100 eigenvalues appearing inside an irregular zone (ε > 1.4, red) and inside a regular one
(ε > π, blue). The point n on the abscisa axis represents the energy distance between the (n− 1) and n level. All the sequences
are composed of the species

�
a

a1

�
= −2 and

�
a

a2

�
= −0.25 with equal concentrations. For a fixed length all the states calculated

correspond to the same random sequence. The states have been calculated by finding the transmission of the wave function
through the chain with fixed end-points boundary conditions.
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Increasing the length of the random chain we see how the
spacing distribution for the levels in the smooth region be-
comes more and more homogeneous as the first 100 levels
are included in a smaller energy interval while the spacings
for the levels in the irregular zone do not show a defined
tendency nor a homogeneous distribution. In fact these
last spacing distributions exhibit the same aspect what-
ever the scale would be. The fractality of the density of
states does not depend on any particular parameter of the
random chain; its presence is a consequence of the disor-
der and the dimensionality of the system and it is in this
sense a universal effect. This fractal behaviour might be
related to the fractal conductance fluctuations observed
in gold nanowires [7] in the mesoscopic regime suggesting
a connection between disorder and coherent transport.

4 Concluding remarks

To summarize we would like to point out the main results
we have obtained in this paper. First, we emphasize that
the band structure provided by (7–9) is not just exact but
also extremely useful from the point of view of computer
algebra calculations. In fact we have carried out various
profiles for the curves provided for these conditions until
N=30 or more using just few seconds of a lap-top regular
computer. The reason for that lies mainly in the system-
atic use of the form, products and combinations of the
h(ε)-function defined by (6). The Luttinger theorem has
been generalized to an arbitrary number of different delta
potentials and the Saxon-Hutner Conjecture has also been
definitively established. Similar expressions have been ob-
tained for the case of a disordered finite chain and the
extended functional equation method has been used to
look specifically to the density of electronic states for a
random infinite array. By obtaining the degree of localiza-
tion of the electronic states in the random chains, we have
a more complete picture of the role the levels play in the
transport processes and the existence of extended states
under uncorrelated disorder has been confirmed. The re-
sults are not only in agreement with what was expected in
more sophisticated models but also go beyond them and
we can account for universal properties of the transport
effects by detecting fractality in the conductance. This
work is far from being finished as we want to ascertain
ourselves whether this effect can be measurable in terms
of the fractal dimension and critical exponents. At the
moment, however, we can already offer a large bundle of
properties that arise from a model whose simplicity is not
only a shortcoming but rather an advantage to study com-
plex properties in a benchproof easily manageable.

Appendix A: Gaps theorem

Let us consider a finite chain of N delta potentials of dif-
ferent species with fixed end-points boundary conditions
(Fig. 10). Inside the jth sector we write the wave function
of the electron

Ψj(x) = Ajeikxj + Bje−ikxj , (A.1)

where xj = x − (j − 1)a.

Fig. 10. Deltas chain.

Imposing the conditions at the border x = ja one can
obtain the relationship between the amplitudes of adjacent
sectors:(

Aj+1

Bj+1

)
=

((
1 − i

kaj

)
eika −i

kaj
e−ika

i
kaj

eika
(
1 + i

kaj

)
e−ika

)
︸ ︷︷ ︸

M

(
Aj

Bj

)

(A.2)

and M is the transmission matrix of the sectors. The
boundary conditions are:

A1 + B1 = 0 (A.3a)

AN+1eika + BN+1e−ika = 0. (A.3b)

Let us define inside each sector τj = −ieika Aj

Bj
. Equa-

tions (A.3) become:

τ1 = ieika (A.4a)

τN+1 = ie−ika, (A.4b)

and from (A.2) the transmission for τj is

τj+1 =
cjτj + 1
τj + c∗j

(A.5)

where cj = (i − kaj)eika. Let us use zj =
eika + iτj

1 + iτjeika
. The

boundary conditions now read:

z1 = 0 (A.6a)
zN+1 = ∞. (A.6b)

A straightforward calculation using (A.5) lead us to:

zj+1 =
1

2hj(ka) − zj
· (A.7)

with hj(ka) = cos(ka)+
(

a
aj

) sin(ka)
ka

. Now let us consider

the values of ka satisfying |hj(ka)| > 1 for every aj in
the chain (i.e. the common forbidden bands for all the
one species chains). As |z1| < 1 it is easy to proof by
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induction using (A.7) that |zj| < 1 ⇒ |zj+1| < 1. So we
have |zN+1| < 1 for arbitrary N and the final boundary
condition cannot be satisfied whatever the length of the
chain. Therefore those ka values are not allowed in the
mixed chain. Notice that the order in which the different
species appear is irrelevant. The same conclusion holds for
both periodic and disordered chains.

The result is also valid for complex values of k (i.e.
negative energies).

Appendix B: Functional equation

The limiting distribution of electronic states for a random
chain composed of m different species each one with con-
centration pi, will be given by the average of the spectra
for all sequences which have the given concentrations in
the limit as the number of atoms goes to infinity.

Let us consider the same chain as in Appendix A and
the quantities zj. Since z1 = 0 and the transmission (A.7)
is real, every zj will also be real and we can define a phase
in each sector ϕj so that tan(ϕj) = zj, which yields the
result:

ϕj+1 ≡ Tj(ϕj) = arctan
(

1
2hj(ε) − tan(ϕj)

)
· (B.1)

We need the transmission of the phase to be an increasing
continuous function. Thus we define:

Tj(ϕj) =




arctan
(

1
2hj(ε)−tan(ϕj)

)
if ϕj ∈

(
− π

2 , arctan
(
2hj(ε)

)]
arctan

(
1

2hj(ε)−tan(ϕj)

)
+ π

if ϕj ∈
(

arctan
(
2hj(ε)

)
, π

2

]
(B.2)

Tj(ϕj + nπ) = Tj(ϕj) + nπ ϕj ∈
(
−π

2
,
π

2

]
· (B.3)

This can be easily written by using the inverse function as:

T −1
j (ϕj) = arctan

(
2hj(ε) −

1
tan(ϕj)

)
(B.4)

T −1
j (ϕj + nπ) = T −1

j (ϕj) + nπ ϕj ∈ (0, π] . (B.5)

The boundary conditions are:

ϕ1 = 0 (B.6)

ϕN+1 =
π

2
+ nπ n ∈ Z. (B.7)

Once the transmission of the phases can be written in a
uniquely way, ϕN+1(ε) is a continuous function of ε. Let
us assume the latter to be an increasing function. Then if

ε1 < ε2 the quantity
ϕN+1(ε2) − ϕN+1(ε1)

π
is the number

of times the final boundary condition has been satisfied
from ε1 to ε2 with an error smaller than 1 and therefore
it also represents the number of eigenstates in the interval
ε1 < ε < ε2. So it is clear that we can write the density

   

Fig. 11. Example t = s = 2.

   

Fig. 12. Example s = 2 and t = 3.

of states per atom of the chain whatever the behaviour of
the function ϕN+1(ε) would be as:

G(ε) =
1
π

∣∣∣ϕN+1(ε+dε)
N − ϕN+1(ε)

N

∣∣∣
dε

· (B.8)

As (B.6) holds for all ε, we can write ϕN+1(ε)
N :

ϕN+1

N
=

1
N

N∑
j=1

[
ϕj+1 − ϕj

]
=

N∑
j=1

Tj(ϕj) − ϕj

N
(B.9)

for each value of ε. Thus ϕN+1(ε)
N is the average over all

atoms of the advanced phase which we denote 〈∆ϕ〉(ε). As
Tj(ϕj) − ϕj is a periodic function with period π the av-
erage 〈∆ϕ〉 can be calculated using the distribution func-
tions of the phases ϕj( mod π).

〈∆ϕ〉 =
1
N

N∑
j=1

∫ π

0

dWj(ϕ)
dϕ

{Tj(ϕ) − ϕ} dϕ (B.10)

where Wj(ϕ) with ϕ ∈ (0, π] is the probability that
ϕj( mod π) lies in the interval (0, ϕ]. Also we impose:

Wj(ϕ + rπ) = Wj(ϕ) + r ϕ ∈ (0, π] . (B.11)

The probability distribution for ϕj depends on the distri-
bution for ϕj−1: ϕj( mod π) lies in (0, ϕ] if and only if
ϕj−1( mod π) lies in

(
T −1

j (0), T −1
j (ϕ)

]
( mod π). There

exist integers s and t such that

T −1
j (0)(mod π) ≡ T−1

j (0) = T −1
j (0) − sπ (B.12)

T −1
j (ϕ)(mod π) ≡ T−1

j (ϕ) = T −1
j (ϕ) − tπ (B.13)

and 0 < T −1
j (ϕ) − T −1

j (0) ≤ π from (B.4) thus t must be
equal to s or s + 1.

1. t = s

In this case (Fig. 11):
Wj(ϕ) = Wj−1

(
T−1

j (ϕ)
)
− Wj−1

(
T−1

j (0)
)
.

2. t = s + 1
In this case (Fig. 12):
Wj(ϕ) = 1 − Wj−1

(
T−1

j (0)
)

+ Wj−1

(
T−1

j (ϕ)
)
.
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Using (B.11) we can unify both cases as Wj(ϕ) =
Wj−1

(
T −1

j (ϕ)
)
− Wj−1

(
T −1

j (0)
)
. Thus the distribution

functions are the solutions of the equations

Wj(ϕ) = Wj−1

(
T −1

j (ϕ)
)
− Wj−1

(
T −1

j (0)
)

(B.14a)

Wj(ϕ + rπ) = Wj(ϕ) + r (B.14b)
Wj(π) = 1 (B.14c)
Wj(ϕ) is an increasing function of ϕ (B.14d)

with ϕ ∈ (0, π].
The random chain is composed of m different species

with lengths a1, . . . , am in concentrations p1, . . . , pm

(
∑m

i=0 pi = 1). We have now to take into account all pos-
sible sequences which have the given concentrations. Thus
we only know the probability of finding certain species in
the position x = ja and therefore we must take the aver-
age. The equation (B.10) becomes:

〈∆ϕ〉 =
1
N

N∑
j=1

∫ π

0

dWj(ϕ)
dϕ

m∑
i=1

pi {Ti(ϕ) − ϕ}dϕ ,

(B.15)

and the equations for the distribution functions become:

Wj(ϕ) =
m∑

i=1

pi

{
Wj−1

(
T −1

i (ϕ)
)
− Wj−1

(
T −1

i (0)
)}

(B.16a)
Wj(ϕ + rπ) = Wj(ϕ) + r (B.16b)
Wj(π) = 1 (B.16c)
Wj(ϕ) is an increasing function of ϕ (B.16d)

with ϕ ∈ (0, π]. Notice that now Wj(ϕ) is the probability
that ϕj( mod π) lies in the interval (0, ϕ] in some of the
possible sequences. Let us write (B.15) as

〈∆ϕ〉 =
m∑

i=1

pi

∫ π

0

dWN (ϕ)
dϕ

{Ti(ϕ) − ϕ} dϕ (B.17)

where WN (ϕ) =
1
N

N∑
j=1

Wj(ϕ), which is the average dis-

tribution function of the chain. Let us take the limit
N → ∞ and denote W(ϕ) = lim

N→∞
WN (ϕ). It is not hard

to see that this function will satisfy:

W(ϕ) =
m∑

i=1

pi

{
W
(
T −1

i (ϕ)
)
− W

(
T −1

i (0)
)}

(B.18a)

W(ϕ + rπ) = W(ϕ) + r (B.18b)
W(π) = 1 (B.18c)
W(ϕ) is an increasing function of ϕ (B.18d)

with ϕ ∈ (0, π]. And,

〈∆ϕ〉 =
m∑

i=1

pi

∫ π

0

dW(ϕ)
dϕ

{Ti(ϕ) − ϕ} dϕ. (B.19)

Schmidt has proved [11] that the solution of equa-
tions (B.18) for each energy is unique and continuous. To
carry out the integration in (B.19) we use the existence of
a value ϕ0 = π

2 such that Ti(ϕ0) verifies Ti(ϕ0) ≡ ϕ1 = π
for any species ai.

〈∆ϕ〉 =
m∑

i=1

pi

∫ π

0

dW(ϕ)
dϕ

{Ti(ϕ) − ϕ} dϕ

=
m∑

i=1

pi

∫ ϕ0+π

ϕ0

dW(ϕ)
dϕ

{Ti(ϕ) − ϕ} dϕ ,

integrating by parts

〈∆ϕ〉 =
m∑

i=1

piW(ϕ) {Ti(ϕ) − ϕ}
∣∣∣∣ϕ0+π

ϕ0

−
m∑

i=1

pi

∫ ϕ0+π

ϕ0

W(ϕ)
dTi(ϕ)

dϕ
dϕ+

m∑
i=1

pi

∫ ϕ0+π

ϕ0

W(ϕ)dϕ,

and using (B.18a)
m∑

i=1

pi

∫ ϕ0+π

ϕ0

W(ϕ)
dTi(ϕ)

dϕ
dϕ

=
m∑

i=1

pi

∫ ϕ1+π

ϕ1

W
(
T −1

i (θ)
)
dθ

=
∫ ϕ1+π

ϕ1

W(θ)dθ + π
m∑

i=1

piW
(
T −1

i (0)
)
.

Going back to the expression for 〈∆ϕ〉 we obtain:

〈∆ϕ〉 = (ϕ1 − ϕ0) − π

m∑
i=1

piW
(
T −1

i (0)
)

+
∫ ϕ0+π

ϕ0

W(ϕ)dϕ −
∫ ϕ1+π

ϕ1

W(θ)dθ.

From (B.18b) it is easy to see that∫ ϕ0+π

ϕ0

W(ϕ)dϕ −
∫ ϕ1+π

ϕ1

W(θ)dθ = ϕ0 − ϕ1

and finally the following relationship holds for a certain
value ε of the energy:

〈∆ϕ〉
π

≡ K = −
m∑

i=1

piW
(
T −1

i (0)
)
. (B.20)

Solving the equations (B.18) for different values of ε
one can calculate the density of states of the random
chain from

G(ε) =

∣∣K (ε + ∆ε
2

)
−K

(
ε − ∆ε

2

)∣∣
∆ε

· (B.21)
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