
Eur. Phys. J. B 32, 537–543 (2003)
DOI: 10.1140/epjb/e2003-00132-5 THE EUROPEAN

PHYSICAL JOURNAL B

Simple model for a quantum wire II. Statistically correlated
disorder
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Abstract. In a previous paper (Eur. Phys. J. B 30, 239–251 (2002)) we have presented the main features
and properties of a simple model which –in spite of its simplicity– describes quite accurately the qualitative
behaviour of a quantum wire. The model was composed of N distinct deltas each one carrying a different
coupling. We were able to diagonalize the Hamiltonian in the periodic case and yield a complete and analytic
description of the subsequent band structure. Furthermore the random case was also analyzed and we were
able to describe Anderson localization and fractal structure of the conductance. In the present paper we
go one step further and show how to introduce correlations among the sites of the wire. The presence
of a correlated disorder manifests itself by altering the distribution of states and the localization of the
electrons within the system.

PACS. 03.65.-w Quantum mechanics – 71.23.An Theories and models; localized states –
73.21.Hb Quantum wires

Introduction

In a previous paper [1], hereafter referred to as I, the au-
thors have developed a simple model describing the main
features shown by a Quantum Wire, namely: Band Struc-
ture when the structure is periodically arranged, Anderson
Localization in the random case and easy calculation of
Lyapunov exponents, density of electronic states and elec-
trical conductance endowed with an encouraging frac-
tal behaviour. We address the interested reader to ref-
erence [1] for the details of the model and the intrincacies
of the computer calculations.

The main drawback of the scheme thereby presented
was the lack of a coherent description of the possible corre-
lations which must be present in any realistic model of one
dimensional conductance. It is the purpose of the present
paper to fill this gap by presenting a surprisingly simple
way to incorporate correlations entirely based upon the
random nature of the model. This means that in addi-
tion to describe correlations with different parameters of
the wire (spacing, number and amount of species, ...) the
model is flexible enough to be suitable for applying it to
different correlation schemes such as the Tight-Binding
model, the Anderson model and likely many others corre-
lation prescriptions with sensible physical content.

The paper is organized as follows. In Section 1 we an-
alyze the meaning of the correlations in terms of prob-
abilities of a given atom to be followed by other of a
different character. After this analysis we are able to set
some limits for the values of these probabilities. The next
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step is to incorporate those probabilities to the Functional
Equation developed in [1]. How this functional equation
is modified by the introduction of correlations in the way
just described and how it can be used to calculate the
correlation-corrected Lyapunov exponent is the subject of
Section 2. In Section 3 some results are shown along with
a discussion about the effects of the correlations to close
finally with a section of Conclusions.

1 Correlations

Let us consider disordered quantum wires with short-
range correlations which will be specified by the probabil-
ity for a certain atomic species to be followed by another
type of atom in the chain sequence. In this model, the
system will be characterized by the species concentrations
{ci}i=1,...,m where m is the number of different species,
and the set {pij}i,j=1,...,m where pij means the probability
for i to be followed by j (the prob. of finding j right af-
ter i). The correlations introduced in this way must be the
consequence of the existence of an atomic interaction (or
the effect of some physical parameters such as the size of
the atoms) which might choose certain spatial sequences of
the atoms modifying subtly the otherwise chain’s purely
random character. Thus this procedure seems a natural
manner to account for correlations which can be present in
nature or even those that can be produced inside a manu-
factured disordered quantum wire in a nonintentional way
aside from the fact that of course one can always try to
construct a wire exhibiting the desired correlations to re-
cover the theoretical results.
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Let us clarify the meaning of pij . It is the ratio of the
number of -ij- clusters and the number of i atoms (Ni).
The probability pij is not the probability for j to be pre-
ceded by i, because the latter would be obtained divid-
ing by the number of j atoms (Nj) instead of Ni. In the
limit N → ∞, the system will be determined by {ci}
and {pij} and therefore the density of states will be given
by a limiting distribution depending only on those quan-
tities. And that distribution is of course the same whether
we move from left to right or from right to left along the
chain. So, the correlations we measure have to coincide
in both directions. Then it is clear that for the infinite
chain pij means the probability for an ‘i’ species atom to
be followed or preceded by a ‘j’ species atom.

Once we have understood the meaning of the corre-
lations, let us derive the relations among them. What is
the probability of finding at any position of the chain the
cluster -iji-? We can write this quantity as,

ci · pij · pji →prob. of finding i · finding j after i ·
· finding i after j

cj · p2
ji →prob. of finding j · finding i after j ·

· finding i before j.

Thus the equations for the correlations are,

cipij = cjpji (1a)
m∑

j=1

pij = 1 (1b)

0 ≤ pij ≤ 1 i, j = 1, . . . , m. (1c)

According to the equations, the correlations matrix (pij)
is completely known from the above diagonal elements,
m(m−1)

2 where m is the number of different species. How-
ever these elements are not completely independent due
to (1c), because when one of the correlations is chosen,
the maximum allowed value for some of the rest may
be affected. This fact can be clearly seen in two simple
examples:
2 species: the matrix is completely determined by p12,

p11 = 1 − p12; p21 =
c1

c2
p12; p22 = 1 − p21

but it must be p21 ≤ 1 ⇒ p12 ≤ c2

c1
·

Therefore p12 ≤ min
{

1,
c2

c1

}
·

3 species: the matrix is determined by p12, p13, p23. And
we choose their values in that order.

p12 ≤ min
{

1,
c2

c1

}
which implies

p13 ≤ min
{

1 − p12,
c3

c1

}
·

On the other hand it must be,

p23 ≤ 1 − p21

p32 ≤ 1 − p31 ⇒ p23 ≤ c3

c2
(1 − p31),

therefore p23 ≤ min
{

1 − c1

c2
p12,

c3

c2
− c1

c2
p13

}
·

An expression for the general form of the maximum
values can be obtained for arbitrary m. Choosing the
above diagonal elements of the correlations matrix by
rows,

P =




p11 p12 −→ . . . −→ p1m

p21 p22 p23 −→ −→ p2m

...
...

. . . . . .
...

...
...

. . . . . .
...

p(m−1)1 p(m−1)2 . . . . . . . . p(m−1)(m−1) p(m−1)m

pm1 pm2 . . . . . . . . pm(m−1) pmm




then

pij ≤ min

{
1 − 1

ci

i−1∑
k=1

ckpki −
j−1∑

k=i+1

pik;
cj

ci
− 1

ci

i−1∑
k=1

ckpkj

}
(2)

where the limits are given by the previous chosen
correlations.

Once the concentrations and P are fixed, the charac-
terization of the quantum wire can be given in a compact
form using the matrix

Q = (qij) ≡ (cipij), (3)

which is symmetric (Q = Qt) and it determines uniquely
the wire and its correlations:

m∑
j=1

qij = ci;
m∑

i=1

qij = cj ; pij =
qij

ci
;

qij means the probability of finding the cluster -ij- (-ji-)
at any position inside the wire.

This model naturally includes the situation in which
the disorder in the wire is completely random1, that is
just defined by the values pij = cj i = 1, . . . , m. Figure 1
shows an example of the correlation space for 2 species.

2 The functional equation

We will now obtain the correlation form of the func-
tional equation, which enable us to calculate the density
of states. In this process we are using some of the results
and expressions obtained in reference [1].

The relations for the phase transmission inside the wire
read,

T −1
j (θ) = arctan

(
2hj(ε) −

1
tan θ

)
(4a)

T −1
j (θ + nπ) = T −1

j (θ) + nπ θ ∈ [0, π) (4b)

where hj(ε) = cos(ε)+ (a/aj)
ε sin(ε). To carry out the phase

average we rearrange the terms depending on the species

1 The case in which the wire is obtained “throwing” the
atoms in the given concentrations randomly and there are no
mechanisms (interactions) which select some privileged clus-
ters or series of atoms.
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Fig. 1. Correlation space for 2 species as a function of the con-
centration. The blue dashed line corresponds to the completely
random configurations.

of the last atom we have passed,

〈∆θ〉 = c1
1

N1

∑
j1

{Tj(θj) − θj} + . . .

. . . + cm
1

Nm

∑
jm

{Tj(θj) − θj} (5)

where Ni is the number of atoms of species i and the suma-
tory over ji means we are summing over all the positions j
such that the atom at (j − 1) is of i-kind:

〈∆θ〉 = c1〈∆θ〉1 + . . . + cm〈∆θ〉m =
∑

γ

cγ〈∆θ〉γ . (6)

From now on the greek indices will refer to species while
the latin indices mean the sites of the chain. In this case
there exist correlations in the sequence of atoms, that is
the probability for one species to be a neighbour of another
type can be different for all of them. This implies that each
species will give rise to a particular distribution function
for the phase.

〈∆θ〉γ =
1

Nγ

∑
jγ

∫ π

0

dW γ
j (θ)
dθ

{Tj(θ) − θ} dθ (7)

where W γ
j (θ) is the distribution function of the phase at

the position j generated by the species γ. The equations
for the distributions ((B.14) in [1]) become here,

W γ
j (θ) = W

(∗)
j−1

(
T −1

γ (θ)
)
− W

(∗)
j−1

(π

2

)
+ 1 (8a)

W γ
j (θ + rπ) = W γ

j (θ) + r θ ∈ [0, π) r ∈ Z (8b)

for all species and positions, where the superscript “(∗)”
means that we do not know the species of the atom pre-
ceding the γ atom, placed at position (j − 1); we only
know the probability for a certain species to be there. Let
us introduce now the average over all possible sequences
with the given concentrations.

〈∆θ〉γ =
1

Nγ

∑
jγ

∫ π

0

dW γ
j (θ)
dθ

∑
β

pγβ {Tβ(θ) − θ} dθ (9)

and,

W γ
j (θ) =

∑
β

pγβ

{
W β

j−1

(
T −1

γ (θ)
)
− W β

j−1

(π

2

)}
+ 1.

(10)
The next step consists in taking the limit N → ∞ to
approach the limiting distribution.

We define Wγ(θ) = lim
Nγ→∞

1
Nγ

∑
jγ

W γ
j (θ) which is the

solution of:

Wγ(θ) =
∑

β

pγβ

{
Wβ

(
T −1

γ (θ)
)
− Wβ

(π

2

)}
+ 1

(11a)

Wγ(θ + rπ) = Wγ(θ) + r θ ∈ [0, π) r ∈ Z. (11b)

And finally we have to calculate,

〈∆θ〉 =
∑
γ,β

cγpγβ

∫ π

0

dWγ(θ)
dθ

{Tβ(θ) − θ}dθ. (12)

To carry out the integral we shall make use of the existence
of a value θ0 such that Tγ(θ0) = θ1 ∀ γ, and proceeding
by parts,

〈∆θ〉 = (θ1 − θ0) −

①︷ ︸︸ ︷∑
γ,β

cγpγβ

∫ θ0+π

θ0

Wγ(θ)
dTβ(θ)

dθ
dθ

+
∑

γ

cγ

∫ θ0+π

θ0

Wγ(θ)dθ. (13)

To evaluate the middle term we use the average of equa-
tions (11a) which is

∑
γ

cγWγ(θ) +
∑

β

cβWβ

(π

2

)
− 1 =

∑
γ,β

cγpγβWβ

(
T −1

γ (θ)
)
. (14)

With a simple change of variable, the use of (14) and the
equations for the correlations we can write,

① =
∑
γ,β

cβpβγ

∫ θ1+π

θ1

Wγ

(
T −1

β (θ)
)

dθ

=
∑

γ

cγ

∫ θ1+π

θ1

Wγ(θ)dθ + π
∑

β

cβWβ

(π

2

)
− π,

(15)

and going back to (13),

〈∆θ〉 = (θ1 − θ0) + π − π
∑

β

cβWβ

(π

2

)

+
∑

γ

cγ

{∫ θ0+π

θ0

Wγ(θ)dθ −
∫ θ1+π

θ1

Wγ(θ)dθ

}
· (16)
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It is not hard to see with the help of (11b) that the last
term is θ0 − θ1. Therefore,

〈∆θ〉(ε)
π

= 1 −
∑

γ

cγWγ

(π

2

)
· (17)

Thus the density of states reads ((B.8) in [1]),

g(ε) =

∣∣∣∣∣∑
γ

cγ

dWγ

(
π
2

)
dε

∣∣∣∣∣ (18)

which can be calculated numerically solving equa-
tion (11a) for several values of the energy.

2.1 The Lyapunov exponent

The quantity that provides information about the degree
of spatial localization of the electronic states is the Lya-
punov exponent, which gives the exponential growth rate
of the wave function, and thus its inverse is a measure of
the localization length of a state exponentially localized
inside the wire. The Lyapunov coefficient can be written
for the infinite wire as

Λ = lim
N→∞

1
N

N∑
j=0

log
∣∣∣∣Ψj+1

Ψj

∣∣∣∣ (19)

where Ψj is the amplitude of the wave function at the
jth atomic site. Using a mapping technique originally pro-
posed in reference [2] we are able to write Λ as a function
of the phase (Appendix A),

Λ =
1
2

lim
N→∞

1
N

N∑
j=0

log Fγj (θj) (20)

where Fγj (θ) = 1− 2hγj(ε) sin(2θ) + 4h2
γj

(ε) cos2 θ and γj

stands for the species of the jth atom. Due to the period-
icity of F (θ) we can use the distribution functions of the
phase to calculate the average (20):

Λ =
1
2

∑
γ,β

cγpγβ

∫ π

0

dWγ(θ)
dθ

log Fβ(θ)dθ

=
1
2

∑
γ

cγ log Fγ(π) − 1
2

∑
γ,β

cγpγβ

∫ π

0

Wγ(θ)
F ′

β(θ)
Fβ(θ)

dθ.

(21)

From this last expression one can obtain numerically the
Lyapunov exponent as a function of the energy.

3 Results

Once we have built the mathematical framework lying un-
der the model, one can try to answer the physical ques-
tions that obviously arise from this new configuration of
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Fig. 2. Density of states for a disordered wire of two species
with different correlations.

(
a
a1

)
= −3 and

(
a
a2

)
= 4 with

c1 = 0.4.

the disordered quantum wire: how strong is the effect of
this short-range correlations, does it produce a measur-
able change in the density of states or in the localization
of the electrons? As in reference [1], we solve the functional
equation numerically to obtain the density of states and
to calculate the Lyapunov exponent. It seems really hard
to find analytical solutions for equations (11) if they exist
at all. Let us analyze in the first place the density of states
(DOS) for our quantum wires. In Figure 2 the evolution of
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Fig. 3. DOS and Lyapunov exponent (grey line) for a 4 species quantum wire:
(

a
ai

)
= 1,−1, 3,−5. Notice that the concentrations

are the same for the two configurations.
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(b) p12 = 0.1

Fig. 4. Variation of the Lyapunov exponent for a binary wire composed of
(

a
a1

)
= 1 and

(
a

a2

)
= −3, as a function of the

correlation and as a function of the concentration.

the DOS for a binary wire as a function of the correlation
p12 is shown for a certain value of the concentrations. This
distribution of states is drastically changed from the ini-
tial situation in which the probability to find the cluster
-12- is low to the final stage when we impose the atoms
of species 1 to appear always isolated. Note however that
the concentrations are the same in both cases! Another
example can be seen in Figure 3 for a wire composed of
4 species. As the number of species increases, the num-
ber of correlations grows as m(m−1)

2 , and the distribution
of states can adopt a lot of different shapes: the explo-
ration of the whole correlations and concentrations space
for m > 2 can take a long time. From these graphics we
conclude that the correlations can unbalance the spectra
of the disorder system quite far from the completely ran-
dom configuration. In fact the correlation can be tuned
to open (close) an energy gap or to increase (decrease)
the number of available states in a certain energy interval
without changing the concentrations of the atomic com-
ponents. The variation of the DOS with the correlations

is of course a function of the concentrations being the
chain with homogenized participation the one whose dis-
tribution has the strongest dependence on P. Let us also
remark that the fractal behaviour of the density of states
in certain energy ranges, reported in reference [1], still
manifests itself for the different correlations regimes.

Let us have a look at the localization of the elec-
tronic states. In Figures 4 and 5 the behaviour of the
Lyapunov exponent for a binary chain changing the cor-
relations and the concentrations is shown. In Figure 3 the
different shapes of the degree of localization for differ-
ent correlations can also be noticed for a 4-species wire.
The effective influence of the correlations on the localiza-
tion of the electrons inside the quantum wires is estab-
lished. In the study of correlated disorder two main kinds
of correlations have been taken into account namely short-
range and long-range. The former, mainly represented by
the random dimer model [3], has been widely accepted
to be the reason for the emergence of resonant energies
and a set of states close to the resonant one for which
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Fig. 5. Variation of the Lyapunov exponent for a binary wire composed of
(

a
a1

)
= −2 and

(
a
a2

)
= 5, as a function of the

correlation and as a function of the concentration.

the localization length becomes larger that the system
size [4], improving greatly the transport properties [5].
The long-range correlations seem to be able to include
in the spectrum mobility edges [6], that can be entirely
controlled by the correlators [7], yielding an energy inter-
val of a complete transparency. In our type of wires we
have not observed mobility edges nor resonant energies.
However an important effect on the localization of the
states is shown that seems to act globally in the whole
energy range in contrast to the more restricted effect of
others short-range correlated disorder models. In fact for
certain energies the Lyapunov exponent can be decreased
an 80–90% of its maximum value changing the correla-
tions at the expense of an increasing behaviour for other
energies. Whether these correlations might cause Λ to go
below the inverse of the length of a finite sample for some
energy intervals is not certainly clear but it could be a
point for future discussions. One can now argue if this in-
fluence of the correlations on the localization as well as
on the DOS will be a measurable effect on short finite
wires that represent a simple practical implementation,
or on the contrary is just theoretically achievable only in
infinite unreal systems. In order to answer that question
and ascertain ourselves of the importance of the results
we learn to generate finite sequences showing this kind of
correlations. In Figure 6 we show the Lyapunov exponent
of an infinite wire for a certain concentration and correla-
tion calculated using the functional equation, and the one
obtained numerically from equation (19) for a correlated
disordered chain of 1000 atoms. The convergence is excel-
lent with only one realization of the correlated disorder
using one thousand of atoms, and we have also checked it
for others couplings of the species and other correlations
obtaining a high degree of agreement. Thus it means that
the described results are real effects with some practical
importance on experimental realizations and on the other
hand that the method of the functional equation, although
designed for an infinite wire, can reproduce quite well the
tendency in finite samples.

1
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Fig. 6. Lyapunov exponent for a binary wire with
(

a
a1

)
= −2,(

a
a2

)
= 3, c1 = 0.5 and p12 = 0.9. The red line corresponds to

the infinite wire. The blue line shown Λ numerically calculated
for a sequence of 1000 atoms.

4 Concluding remarks

To summarize, we have extended the model proposed
in reference [1] and completed the formalism introduced
there including the possible correlations which must be
present in any realistic model of one dimensional conduc-
tance. The method described here is the most natural
manner to account for correlations that can manifest in
nature or even inside a manufactured quantum wire in a
nonintentional way.

It has been established how due to the correlated dis-
order the density of states is essentially modified and the
localization of the electronic states changes in a non neg-
ligible proportion which might alter some macroscopic
properties of these structures.

In addition to the obtained results we are preparing
a future report in which we will construct the functional
equation formalism in a more coherent way relating it to
others methods currently used. There it will be shown
how this mathematical framework is flexible enough to be
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suitable for applying it to different disorder models such
as the Tight-Binding model as well as other correlation
schemes such as the random dimer.

Finally we would like to point out that the software
we have built to solve numerically the functional equation
with correlations and to calculate the density of states and
the Lyapunov exponent is freely available to the public at
http://sonia.usal.es/qwires/ so everyone can use it
to reproduce the results hereby presented and to explore
new configurations.

We acknowledge with thanks the support provided by the Re-
search in Science and Technology Agency of the Spanish Gov-
ernment (DGICYT) under contract BFM2002-02609.

Appendix A: Lyapunov exponent

It can be shown that the electronic wave function satisfies,

2hγj(ε)Ψj = Ψj+1 + Ψj−1 (22)

where Ψj is the amplitude of the wave function at the jth
atomic site of the chain. This equation can be visualized as
a two dimensional mapping in polar coordinates with the
identification Ψj+1 = rj+1 cos θj+1 and Ψj = rj+1 sin θj+1,(

rj+1 cos θj+1

rj+1 sin θj+1

)
=

(
2hγj (ε) −1

1 0

)(
rj cos θj

rj sin θj

)
(23)

which yields the known transmission relationship for the
phase and the following for the moduli r,

r2
j+1

r2
j

≡ Fγj (θj) = 1 − 2hγj(ε) sin(2θj) + 4h2
γj

(ε) cos2 θj .

(24)

If now we introduce the polar coordinates into the def-
inition of the Lyapunov exponent we obtain:

Λ = lim
N→∞

1
N

N∑
j=0

log
∣∣∣∣Ψj+1

Ψj

∣∣∣∣
= lim

N→∞
1
N

N∑
j=0

log
(

rj+1

rj

)
+ lim

N→∞
1
N

N∑
j=0

log
∣∣∣∣cos θj+1

cos θj

∣∣∣∣
= lim

N→∞
1
N

N∑
j=0

log
(

rj+1

rj

)
(25)

because according to the meaning of Λ the cosinus term
must be zero. And using (24) we can calculate the Lya-
punov coefficient as a function of the phase, as:

Λ =
1
2

lim
N→∞

1
N

N∑
j=0

log Fγj (θj) (26)

which is our expression (20).
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