
Journal of Nonlinear Mathematical Physics Volume 12, Supplement 1 (2005), 266–279 Birthday Issue

Singular Manifold Method for an Equation in

2 + 1 Dimensions
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Abstract

The Singular Manifold Method is presented as an excellent tool to study a 2 + 1
dimensional equation in despite of the fact that the same method presents several
problems when applied to 1 + 1 reductions of the same equation. Nevertheless these
problems are solved when the number of dimensions of the equation is increased.

1 Introduction

There are many different approaches to the study of nonlinear partial differential equations.
Equations in 1+ 1 dimensions are considered as the easiest part of the field. The different
methods start usually with equations in 1 + 1 dimensions and then, when the method has
succeeded, the generalization to 2 + 1 dimensions can be considered [17].

Among the different methods to study a given PDE, the Singular Manifold Method
(SMM) [21] based in the Painlevé property [20] has been proved to be very effective. As
it is well known, the Painlevé test is an algorithmic procedure that allows us to determine
if the solutions of a PDE are singlevalued in the initial conditions. Essentially, for a PDE
in z1...zn variables, the Painlevé test requires that all the solutions of the PDE could be
locally written as:

u(z1, ....zn) =
∞
∑

j=0

uj(z1, ....zn) [φ(z1, ....zn)]j−a
, (1.1)

where a is an integer positive number and φ(z1, ....zn) a totally arbitrary differentiable
function. Furthermore, once the Painlevé test has been checked for a given PDE, the SMM
allows us to derive Bäcklund transformations, Lax pair, Darboux transformations and
tau-functions for the PDE. Nevertheless we must remember that there are some problems
related with Painlevé property, Painlevé test and SMM. We list some of them:
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• One of the main criticisms to the Painlevé property is the fact that it is noninvariant
under changes of dependent and/or independent variables. Many times it is not
easy to identify the change of variables that allow us to write a PDE in a form such
that the Painlevé test can be applied with success. Hodograph transformations can
be sometimes used to this purpose [5]. In this sense we must say that precisely
this ubiquity of a PDE, that can appear in many different forms depending of the
variables that we have choosed, can be solved by means of the SMM. Actually, when
we have been able to write a PDE in a form in which the SMM has been successful,
this method provides us the singular manifold equations that can be considered
as the canonical form of a PDE. We can conjecture that, if two PDE’s have the
same singular manifold equations, then there exists a transformation that relates the
two equations since they are essentially the same [10].

• The usual SMM could be too restrictive when is applied to PDEs with several
Painlevé branches. Modifications of SMM that includes the different branches si-
multaneously can be found in the following references: [7], [9], [10] and [12]. Once
more the solution of this problem includes a bonus: If an equation has two Painlevé
branches, the modification of the SMM provides us not only the right answer but
the Miura transformations that relate our initial PDE to another PDE with just one
Painlevé branch ([9], [10]).

• The SMM requires the truncation of the Painlevé series at the constant level j = a

and the annulation of all the coefficients in the different powers of φ. Sometimes
this condition is very restrictive and needs to be modified [8]. Specially for some
equations in 1+1 dimensions the SMM imposes so many restrictions that there is not
freedom enough to get nontrivial solutions and/or to introduce a spectral parameter
[7].

This paper concerns specially with the last of the problems listed above. We recall
the ARS (Ablowitz, Ramani, Segur) conjecture, [1], according to which a PDE has the
Painlevé property if all of its reductions have such a property. Our main aim in this paper
is just the opposite. We show that a PDE in 2 + 1 can be much easier analyzed through
the SMM than its reductions to 1+1. In fact we present an equation in 2+1 in which the
SMM works very well. Nevertheless the SMM, when applied directly to its three simplest
reductions to 1 + 1 dimensions, presents one or several of the problems listed above. One
can conclude that it is necessary to increase the number of dimensions in order to have
sufficient freedom for the SMM not be too restrictive.

The plan of the paper is the following:

• In section 2 an equation in 2+ 1 dimensions is proposed and it is proved that passes
the Painlevé test.

• In section 3 a complete analysis of the 2+1 equation is made by means of the SMM
that allows us to obtain the Lax pair and Darboux transformations for the equation.

• Different reductions are presented in section 4. Their Lax pairs are also derived by
reduction of the 2 + 1 dimensional Lax pair.

• Conclusions are presented in section 5.
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2 An equation in 2 + 1 dimensions

The equation under scrutiny is the following one for a field h depending on 2+1 variables
x, y and z:

[

hxxz −
3

4

(

h2
xz

hz

)

+ 3hxhz

]

x

= hyz . (2.1)

Alternatively we can introduce a new dependent field p(x, y, z) in order to write (2.1) as
the following system:

hz + p2 = 0, (2.2)

−py + pxxx +
3

2
p hxx + 3 pxhx = 0. (2.3)

We obtained (2.1) by searching 2+1 integrable generalizations of peakon equations. Actu-
ally, (2.1) generalizes the Ermakov-Pinney equation [13] that, as has been proved in [15],
is related by means of a reciprocal transformation to an equation with peakon solutions:
the Degasperis-Procesi equation. Furthermore, (2.1) can be considered as a modified ver-
sion of the generalized Hirota-Satsuma equation presented in [2] and [8] as a model for an
incompressible fluid.

2.1 Painlevé test

To check if (2.1) passes the Painlevé test, the solutions should be written locally as [20]:

h =
∞
∑

j=0

hj(x, y, z) [φ(x, y, z)]j−a
. (2.4)

Substitution of (2.4) into (2.1) gives us a polynomial in φ (we have used MAPLE to handle
the calculation) of the type:

∞
∑

j=0

Cj [φ(x, y, z)]3j−3a−6 = 0 (2.5)

The leading term (j = 0) gives us:

a = 1, (2.6)

h0 = φx. (2.7)

The coefficient in hj is:

φ5
xφ

3
zφ

j−9(j − 1)(j − 3)(j − 4)(j + 1) (2.8)

which means that the equation has resonances in j = 1, 3, 4. It is not difficult to check
that C1, C3 and C4 are identically 0 for any value of h1, h3 and h4. Consequently h admits
a local expansion (2.4) in terms of four arbitrary functions φ, h1, h3 and h4 which means
that (2.1) passes the Painlevé test [20].
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2.2 Reductions

There are three obvious reductions of (2.1).

• 1) ∂h
∂y

= 0

Actually it is equivalent to the reduction ∂ĥ
∂y

= ∂ĥ
∂x

if we redefine h as h = ĥ + x
3 .

With this reduction the equation (2.1) is
[

hxxz −
3

4

(

h2
xz

hz

)

+ 3hxhz

]

x

= 0. (2.9)

or

hz = −p2,

0 =
(

2ppxx − p2
x + 3p2hx

)

x
. (2.10)

Integration of (2.10) gives us:

ppxx −
p2

x

2
+ 2V p2 + F (z) = 0, Vz = −

3

4
(p2)x

that is the Ermakov-Pinney equation [13]. As it has been proved in [15] (see equation
(2.15) of this reference), this equation arises through a reciprocal transformation from
the Degasperis-Procesi equation [6] that is an equation with peakon solutions [11]
similar to the celebrated Camassa-Holm equation [4]. As we see in the next section,
the SMM is not effective when applied directly to (2.9). The number of conditions
that the SMM requires is so large that only a few trivial solutions can be identified
by this procedure.

• 2) ∂h
∂z

= ∂h
∂x

This reduction yields trivially to the modified Korteveg de Vries equation:

py − pxxx + 6p2px = 0. (2.11)

The problem, in this case, is that (2.11) has two Painlevé branches (see [12]). Nev-
ertheless, as it has been proved in [7], the SMM can be implemented by including
both branches simultaneously. This generalization of the SMM has been applied
successfully to many equations with two Painlevé branches [9], [10].

• 3) ∂h
∂z

= ∂h
∂y

This reduction yields the 1 + 1 equation:

[

hxxz −
3

4

(

h2
xz

hz

)

+ 3hxhz

]

x

= hzz. (2.12)

or

hz = −p2,

−pz + pxxx +
3

2
phxx + 3pxhx = 0. (2.13)

The problem with the SMM for this equation is exactly the same that in the case of
the reduction 1). The method happens to be too restrictive and it does not provide
a spectral parameter.

We see in the next sections how to solve the problems by going to 2 + 1 dimensions.
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3 Singular Manifold Method

In order to make the calculations much easier, it is convenient to write (2.1) in nonlocal
form as the system

hy = nx, (3.1)

hxxzhz −
3

4
h2

xz + 3hxh
2
z − hznz = 0. (3.2)

3.1 Truncated expansion

The SSM [21] requires the truncation of the Painlevé series (2.4) at the constant level
j = a. It implies according to (2.6)-(2.7) that solutions h(1), n(1) of (3.2) can be written
as:

h(1) = h+
φx

φ
,

n(1) = n+
φy

φ
. (3.3)

The SMM implies that h and n are also seminal solutions of the system (3.1)-(3.2). φ is
now the so-called singular manifold associated to the (h, n) solution.

Substitution of (3.3) in (3.2) yields a polynomial in negative powers of φ of the form:

4
∑

k=0

Ek

(

φx

φ

)k

= 0. (3.4)

Setting to zero all the coefficients Ek, we get the following results (see Appendix A):

3.2 Seminal solutions

The seminal field h can be written in terms of the singular manifold through the following
expressions:

hx = −
Vx

3
−
V 2

12
+
Q

3
, (3.5)

hz = −
1

4R
(Rx +RV )2 , (3.6)

where it has been useful to define V , R and Q as:

V =
φxx

φx
,

R =
φz

φx

, (3.7)

Q =
φy

φx
.
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The compatibility between the above definitions implies:

Vz = (Rx +RV )x (3.8)

Vy = (Qx +QV )x . (3.9)

It is also convenient to define the Schwartzian derivative:

S = Vx −
V 2

2
(3.10)

3.3 Singular Manifold Equations

Ek=0 provides (see Appendix A) the following relation between S, Q and R.

Qz = Sz −
3

2
Rx

(

S +
Rxx

R
−

R2
x

2R2

)

(3.11)

that together with (3.8) and (3.9) constitute the singular manifold equations, which
means the equations that the singular manifold φ should satisfy in order to have a trun-
cation of the Painlevé series.

3.4 Lax pair

The expressions (3.5)-(3.6) can be easily linearized by introducing a new function ψ defined
as:

φx = ψ2 (3.12)

and consequently according to (3.7)-(3.9), we have:

V = 2
ψx

ψ
, (3.13)

Rx +RV = 2
ψz

ψ
, (3.14)

Qx +QV = 2
ψy

ψ
, (3.15)

By substituting (3.13) and (3.14) into (3.5)-(3.6), we get:

Q = 3hx + 2
ψxx

ψ
−
ψ2

x

ψ2
, (3.16)

R = −
ψ2

z

hzψ2
. (3.17)

Substitution of (3.13), (3.16) and (3.17) into (3.14)-(3.15) provides us the Lax pair:

−ψy + ψxxx + 3hxψx +
3

2
hxxψ = 0, (3.18)

ψxz −
hxz

2hz
ψz + hzψ = 0, (3.19)
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where the eigenfunction ψ is related to the singular manifold through (3.12).
If we consider the Lax pair as the compatibility condition between the operators

T1 = ∂x∂z −
hxz

2hz
∂z + hz

T2 = ∂y − ∂3
x − 3hx∂x −

3

2
hxx

and compare with the spectral problem studied in [3] (see equations (2.1) and (2.2) of this
reference), it is easy to see that T1 belongs to the class discussed there, but T2 does not
because in our case it has ∂3

x instead of ∂2
x [17].

3.5 Darboux Transformations

Let ψ1 and ψ2 be two different eigenfunctions for h, which means that they satisfy (3.18)-
(3.19).

−ψ1,y + ψ1,xxx + 3hxψ1,x +
3

2
hxxψ1 = 0,

ψ1,xz −
hxz

hz
ψ1,z + hzψ1 = 0. (3.20)

−ψ2,y + ψ2,xxx + 3hxψ2,x +
3

2
hxxψ2 = 0,

ψ2,xz −
hxz

hz
ψ2,z + hzψ2 = 0. (3.21)

Therefore there must be two singular manifolds for h defined as:

φ1,x = ψ2
1 , φ2,x = ψ2

2 . (3.22)

According to (3.3) we can obtain a new solution (h(1), n(1)) through the truncated expan-
sion

h(1) = h+
φ1,x

φ1
,

n(1) = n+
φ1,y

φ1
. (3.23)

Since (h(1), n(1)) is also solution of (3.1)-(3.2), its Lax pair is:

−ψ(1)
y + ψ(1)

xxx + 3h(1)
x ψ(1)

x +
3

2
h(1)

xxψ
(1) = 0,

ψ(1)
xz −

h
(1)
xz

h
(1)
z

ψ(1)
z + h(1)

z ψ(1) = 0, (3.24)

where ψ(1) is an eigenfuntion for h(1). So we can define a singular manifold φ(1) for h(1)

through the following expression

φ(1)
x =

(

ψ(1)
)2
. (3.25)
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The idea is to consider (3.1), (3.2), (3.24) and (3.25) as a nonlinear system of PDE’s in
h(1), n(1), ψ(1) and φ(1). Therefore the truncated expansion (3.23) for h(1) and n(1) can be
extended to ψ(1) and φ(1) as:

ψ(1) = ψ2 +
Λ

φ1
,

φ(1) = φ2 +
∆

φ1
. (3.26)

Substitution of (3.23) and (3.26) in (3.24) and (3.25) provides us polynomials in negative
powers of φ1. The result (see Appendix B) is:

Λ = −ψ1Ω,

∆ = −Ω2, (3.27)

where Ω satisfies :

dΩ = ψ1ψ2 dx+ (ψ1ψ2,xx + ψ2ψ1,xx − ψ1,xψ2,x + 3hxψ1ψ2) dy −
ψ1,zψ2,z

hz
dz (3.28)

Therefore (3.23) and (3.26) are binary Darboux transformations in the sense that they
allow us to construct the iterated Lax pair (3.24) through the solutions of two seminal
Lax pairs (3.20) and (3.21). Nevertheless we should remark that these transformations
are not the usual binary Darboux transformations that appear, for instance, in references
[18] and [19], because in (3.26) not only the eigenfunctions ψ1 and ψ2 appear but also the
singular manifold φ1 =

∫

ψ2
1 dx. Transformations like (3.23)-(3.26) have been denominated

Bäcklund-gauge transformations in reference [16].

3.6 Iterated solutions

As we have shown above, φ(1) is a singular manifold for h(1). Therefore it can be used to
iterate (3.23) in the following form:

h(2) = h(1) +
φ

(1)
x

φ(1)
,

n(2) = n(1) +
φ

(1)
y

φ(1)
. (3.29)

This second iteration (3.29) can be combined with the first one (3.23), and with (3.26)
and (3.27) to give:

h(2) = h+
τx

τ
,

n(2) = n+
τy

τ
, (3.30)

where

τ = φ(1)φ1 = φ2φ1 − Ω2. (3.31)
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4 Reductions

As we said in subsection 2.2, there are several interesting reductions of (2.1).

4.1 ∂h
∂y

= 0

The equation can be written as:
[

hxxz −
3

4

(

h2
xz

hz

)

+ 3hxhz

]

x

= 0 (4.1)

or : hz = −p2,
(

2ppxx − p2
x + 3p2hx

)

x
= 0, (4.2)

that, after integration with respect to x, is the Ermakov-Pinney equation ppxx −
p2

x

2 +
2V p2 + F (z) = 0 with Vz = −3

4(p2)x (see [13] and [15]). This reduction implies Q = 0.
To get a right Lax pair with a spectral parameter it is necessary to go to the 2 + 1 Lax
pair (3.18)-(3.19) and make the gauge-reduction ψ(x, y, z) = eλyψ̂(x, z). The reduction of
(3.18)-(3.19) is obviously:

ψ̂xxx + 3hxψ̂x +

(

3

2
hxx − λ

)

ψ̂ = 0, (4.3)

ψ̂xz −
hxz

hz

ψ̂x + hzψ̂ = 0. (4.4)

The compatibility condition between (4.3) and (4.4) gives us the third-order spectral
problem

ψ̂xxx + 3hxψ̂x +

(

3

2
hxx − λ

)

ψ̂ = 0,

λψ̂z = −hzψxx +
hxz

2
ψ̂x +

(

−
hxxz

2
+
h2

xz

4hz
− 3hxhz

)

ψ̂ = 0, (4.5)

that is the Lax pair of reference [14].

4.2 ∂h
∂z

=
∂h
∂x

In this case the reduction of (2.2) is:

hx = −p2. (4.6)

Therefore (2.3) is the modified Korteveg-de Vries equation:

−py + pxxx − 6p2px = 0. (4.7)

Before doing the reduction in the Lax pair, we need to introduce the spectral parameter
through the gauge ψ = eλzψ̂ and then make the reduction ∂h

∂z
= ∂h

∂x
, hx = −p2 in (3.18)-

(3.19). The result is the second-order spectral problem:

ψ̂xx +

(

λ−
px

p

)

ψ̂x +

(

−p2 − λ
px

p

)

ψ̂ = 0,

ψ̂y +

(

2p2 + λ
px

p
−
pxx

p
− λ2

)

ψ̂x +

(

λ
pxx

p
+ λ2 px

p
+ λp2

)

ψ̂ = 0. (4.8)
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4.3 ∂h
∂z

=
∂h
∂y

The reduction gives us the 1 + 1 PDE
[

hxxz −
3

4

(

h2
xz

hz

)

+ 3hxhz

]

x

= hzz. (4.9)

To have the right reduction of the Lax pair, we need to make the gauge transformation
ψ = eλyψ̂ and the reduction ∂h

∂z
= ∂h

∂y
. In this case (3.18)-(3.19) reduce to:

−ψ̂z + ψ̂xxx + 3hxψ̂x +

(

3

2
hxx − λ

)

ψ̂ = 0, (4.10)

ψ̂xz −
hxz

hz
ψ̂x + hzψ̂ = 0. (4.11)

Solving (4.10) for ψ̂z and substituting this into (4.11), we get the fourth-order spectral
problem:

ψ̂xxxx −
hxz

2hz
ψ̂xxx + 3hxψ̂xx+

+

(

9hxx

2
−

3hxhxz

2hz
− λ

)

ψ̂x +

(

hz +
3hxxx

2
+
λhxz

2hz
−

3hxzhxx

4hz

)

ψ̂ = 0,

−ψ̂z + ψ̂xxx + 3hxψ̂x +

(

3

2
hxx − λ

)

ψ̂ = 0. (4.12)

5 Conclusions

• A new equation (2.1) in 2 + 1 dimensions is presented and the Painlevé test is
successfully applied.

• It should be noted that, although the SMM presents several problems when it is
applied directly to different 1+1 dimensional reductions of (2.1), it has been proved
to be an excellent tool to analyze the 2+1 dimensional equation (2.1). It works very
well and allow us to obtain the Lax pair, Darboux transformations and an iterative
method to obtain solutions of (2.1).

• The Lax pairs for the different 1+1 dimensional reductions can be derived from the
2 + 1 dimensional Lax pair.
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Appendix A

We used MAPLE to compute the polynomial that results from the substitution of (3.3)
into (3.2): The result is a polynomial of the form (3.4) the first coefficient of which is:
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E4 =
R2

4
(6hx + 3vx − S − 2Q) (5.1)

that can be solved as:

hx = −
Vx

2
+
Q

3
+
S

6
. (5.2)

At this point it is useful to remember that the Painlevé Property is invariant under ho-
mographic transformations [21]. Therefore it is convenient to write everything in terms of
the homographic invariants S, R and Q. It can be done if we introduce the change:

h = α−
V

2
,

n = β −
Qx +QV

2
. (5.3)

From (5.2) and (5.3) we have that αx is the homographic invariant

αx =
Q

3
+
S

6
(5.4)

Substitution of (5.2) and (5.3) into (3.4) gives us:

E3 = 0

E2 =
1

6

(

−18α2
z + 6Rαz (S −Q) + 6Rβz + 2RSxz − 5RQxz

)

(5.5)

E1 = −E2V −
1

6
(6αz(Qz − Sz + SRx −QRx) −Rx(2Sxz − 5Qxz) + 6Rxβz) . (5.6)

We can solve (5.5) for βz and by substituting it into (5.6) we have:

αz =
R

3Rx
(Sz −Qz) . (5.7)

The compatibility condition αxz = αzx between (5.4) and (5.7) provides us:

(Sz −Qz)
2 (

−4R2 (Sz −Qz) +Rx

(

−3R2
x + 6RRxx + 6SR2

))

= 0. (5.8)

The solution Sz = Qz of (5.8) it is not useful because in such a case (5.7) implies αz = 0.
Therefore the solution of (5.8) should be:

Qz = Sz +
3

2
Rx

(

S +
Rxx

R
−

R2
x

2R2

)

, (5.9)

that is the singular manifold equation (3.11). Substitution of (5.9) into (5.7) yields:

αz =
Rxx

2
+
RS

2
−
R2

x

4R
. (5.10)

Substitution of (5.4) and (5.10) into (5.3) gives finally us (3.5)-(3.6).
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Appendix B

• Substitution of (3.26) into the second of equations (3.24) gives us the following polyno-
mial in φ1

(

φ2,x − ψ2
2

)

+
1

φ1
(∆x − 2ψ2Λ) −

1

φ2
1

(

∆φ1,x + Λ2
)

= 0. (5.11)

By using (3.22) we get:

1

φ1
(∆x − 2ψ2Λ) −

1

φ2
1

(

∆ψ2
1 + Λ2

)

= 0. (5.12)

Setting to zero both coefficients we have:

∆ = −

(

Λ

ψ1

)2

,

(

Λ

ψ1

)

x

+ ψ1ψ2 = 0, (5.13)

that can be easily written as:

∆ = −Ω2,

Ωx = ψ1ψ2, (5.14)

by introducing

Ω = −
∆

ψ1
. (5.15)

• Substitution of (3.26) into the second of the equations (3.24) gives us:

(

ψ1,x − ψ1
hxz

2hz

)[

1

φ1
(Ωzhz + ψ1,zψ2,z) −

1

φ2
1

(

Ωhzφ1,z + Ωψ2
1,z + φ1,zψ2,zψ1 − Ωzψ1,zψ1

)

]

,

(5.16)

where we have used (5.14) and ψi,xz = −hzψi +
hxz

hz
ψi,z, i = 1, 2.

From (3.6), (3.7) and (3.17) we have:

φ1,z = −
ψ2

1,z

hz
(5.17)

that can be substituted into (5.16) to give:

(

ψ1,x − ψ1
hxz

2hz

) (

1

φ1
+
ψ1ψ1,z

hzφ
2
1

)

(Ωzhz + ψ1,zψ2,z) . (5.18)

Therefore

Ωz = −
ψ1,zψ2,z

hz

(5.19)
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• Substitution of (3.26) in the first of the equations (3.25) gives us the following polynomial
in φ1

ψ1Ω

φ2
1

(

2ψ1ψ1,xx − ψ2
1,x + 3hxψ

2
1 − φ1,y

)

−
ψ1

φ1
Ω

(

ψ1,y − ψ1,xxx − 3hxψ1,x −
3

2
hxxψ1

)

−
ψ1

φ1
(ψ1ψ2,xx + ψ2ψ1,xx − ψ1,xψ2,x + 3hxψ1 − Ωy) = 0. (5.20)

From (3.5) and (3.7) we have:

φ1,y = φ1,x

(

3hx + V1,x +
V 2

1

4

)

(5.21)

and, if we use (3.12) and (3.13),

φ1,y = 3hxψ
2
1 + 2ψ1ψ1,xx − ψ2

1,x. (5.22)

Substitution of (5.22) and (3.20) into (5.20) provides us:

−
ψ1

φ1
(ψ1ψ2,xx + ψ2ψ1,xx − ψ1,xψ2,x + 3hxψ1 − Ωy) = 0 (5.23)

and therefore:

Ωy = ψ1ψ2,xx + ψ2ψ1,xx − ψ1,xψ2,x + 3hxψ1. (5.24)
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