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Abstract

A complete band structure is shown to exist for one-dimensional periodic non-Hermitian potentials exhibitingPT -symmetry.
The full band spectrum is exactly given and some of its properties discussed, specially those concerning the role of the
parameters of the couplings. Infinite periodic arrays constructed with finite chains each one made ofN different ultralocal
couplings are used as models of this one-dimensional complex quantum wire.
 2003 Elsevier B.V. All rights reserved.
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In a previous series of papers ([1,2]), we have presented the exact diagonalization of the Hermitian Sch
operator corresponding to a periodic potential composed ofN atoms modeled by delta functions with differe
couplings for arbitraryN. This basic structure can repeat itself an infinite number of times giving rise to a pe
structure representing aN-species one-dimensional infinite chain of atoms. To our surprise this model is e
solvable and a far from straightforward calculation leads to an exact band condition. Due to the factorizab
of the solution one has not only the advantage of closed form expressions but one can also perform c
calculations with an exceedingly degree of accuracy due to the exact nature of the solution itself. The main
motivation was indeed to modelate the band structure of a one-dimensional quantum wire. To our surp
model can be extended with a minimum amount of effort to the non-Hermitian butPT -symmetric [3] quantum
Hamiltonian and the band condition becomesrealalthough the potential is obviously acomplexone. The imaginary
parts of the couplings play a central role in defining the band structure which can be modeled at will by vary
parameter. The purpose of this Letter is to present this new solution as well as some preliminary graphic
show part of the rich structure that this model exhibits. Also the idea of performing band structure calculation
a non-Hermitian Hamiltonian is extremely promising as the examples ofPT -symmetric quantum Hamiltonians s
far existing in the literature rely more in aspects concerning the discrete spectrum and bound states ([4–7]
also far from an actual physical application. It is not the aim of the present Letter to provide a full discus
the manifold aspects of thePT -symmetry in quantum mechanics. We address the interested reader to the o
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reference [3] and also to some work done recently in one-dimensional models [8] which may help to und
better the role ofPT -symmetry in the framework of one-dimensional systems. In all these papers the ima
part of the coupling plays a substantial role in defining the spectrum of bound states. We shall show tha
case of the band structure hereby presented this imaginary parts are of primary importance in defining the
properties of the one-dimensional quantum chain. Indeed band theory is just a small part of the main pr
of the one-dimensional array. We should also be interested in localization and density of states. Howev
research of the statistically correlated disorder in the presence ofPT -symmetry seems much more involved
the PT -symmetry is hard to implement for random chains. Work in this direction is now in progress an
be the subject of a separate paper [10]. We shall describe in this Letter the quantum solution of the m
the band structure in the presence ofPT -symmetry and the role of the complex couplings in defining the b
structure. Let us begin with a brief remainder of the solution presented in [1] corresponding to a infinite p
potential composed of a basic structure made out of afinite numberN of equally spaced deltas with differentreal
N couplings, repeating itself aninfinitenumber of times. If the spacing isa and

(1)ai = h̄2

me2
i

is the length associated to each coupling, we define the matrices:

(2)E =
(

eika e−ika

−ikeika ike−ika

)
, Aj =

( −1 −1(
ik − 2

aj

) −(
ik + 2

aj

))

and the band structure is defined by the determinant of the following matrix:

(3)




E A1 02×2 · · · · · · · · · 02×2
02×2 E A2 02×2 · · · · · · 02×2

... 02×2 E A3 02×2 · · · 02×2

...
... 02×2 · · · · · · · · · ...

...
...

... · · · · · · · · · 02×2

02×2
...

... · · · · · · E AN−1
eiNQaAN 02×2 02×2 · · · · · · 02×2 E




2N×2N

,

whereQ is an arbitrary real number which varies betweenπ
Na

and− π
Na

. It may appear at first glance that th
determinant does not render any tractable expression at all. However this not actually the case. One can s
certain amount of algebra that for evenN the following expression holds:

(4)cos(NQa) = B(ε, a1, a2, . . . , aN),

(5)

B(ε, a1, a2, . . . , aN) = 2N−1
∑
P

hi . . . (N) . . .hk − 2N−3
∑
P

hi . . . (N − 2) . . .hk

+ 2N−5
∑
P

hi . . . (N − 4) . . .hk − · · · (−1)
N
2 −1

∑
P

hi . . . (2) . . .hk + (−1)
N
2 .

The symbol
∑

P hi . . . (M) . . .hk means a sum overall products of M differenthi ’s with the following rule for each
product: the indices must follow an increasing order and to an odd index must always follow an even ind
reciprocally.

The functionshi have the universal form:

(6)hi(x) = cosx +
(

a

ai

)
sinx

x
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and the independent variable is a function of the energy (i.e.,x = ka). In order to see that this condition looks mu
simpler than we could think at the beginning of the calculation let us list below, for the benefit of the read
first three conditions forN = 2, 4 and6.

(7)cos(2Qa) = 2h1h2 − 1,

(8)cos(4Qa) = 8h1h2h3h4 − 2(h1h2 + h1h4 + h2h3 + h3h4) + 1,

(9)

cos(6Qa) = 32h1h2h3h4h5h6

− 8(h1h2h3h4 + h1h2h3h6 + h1h2h5h6 + h1h4h5h6 + h2h3h4h5 + h3h4h5h6)

+ 2(h1h2 + h1h4 + h1h6 + h2h3 + h2h5 + h3h4 + h3h6 + h4h5 + h5h6) − 1.

It does not require too much time to write down the band conditions for fairly largeN, but more important is the
fact that theexactformula (5) is in itself quite easy to program for sequential calculations ([1,2]). The caseN
oddwill be treated separately at the end of this Letter.

Now the important remark regardingPT -symmetry is the fact that expression (5) is stillreal if we use the
following rules:

• Promote the couplings fromreal to complex, i.e.,e2
i → Ri + iIi for the first N

2 hi(x)-functions, where we ar
now using atomic units for which̄h = 2m = 1;

• Order the potential in aPT -invariant form. In our case this leads to the following identifications:

hN = h∗
1,

hN−1 = h∗
2,

...

hN
2 +1 = h∗

N
2
.

It is easy to check that Eq. (5) remainsreal under these identifications which make obviously the periodic pote
complexbutPT -invariant. There has been an earlier attempt to generatereal band condition from a complex bu
PT -invariant potential [9]. However the results concerning the appearance and disappearance of forbid
allowed bands was inconclusive. In our case this effect is clear and will be discussed at length below.

As is well known for years a Hermitian periodic potential cannot alter its band spectrum just by fine tu
the couplings. The bands can indeed be made wider or narrower but its number and quality (forbidden or
remains unchanged. The theorems supporting these statements are all based upon the intuitive idea that a
operator cannot change its spectrum that is basically given by the eigenvalues and eigenfunctions of the
the edges of the bands. The mathematics can be hard but the physical idea is simple. The question that th
address in [9] was indeed whether this behaviour would be maintained if aPT -invariant potential is used. Fo
this purpose they use various analytical potentials carefully shifted to bePT -invariant. They can prove that th
band condition is real but in order to analyze the band structure they have to assert with a very high d
precision whether a given curve is above (below)+1 (−1) in a similar manner as we have to ascertain ourse
that the expressions (7)–(9) (and in general (5)) exceeds+1 or goes below−1. In the case of [9] this appears a ve
hard task indeed as the authors do not have to their disposal an analytical band condition, so they must
various kinds of approximations. The authors conclude that “despite this impressive precision, [. . . its equations]
(16) and (17)cannot be used directly to answer the crucial question of whether there are band gaps becau
approximations to the discriminant[. . .band condition] never cross the values[. . .normalized to] ±1”.

But we do have such an exact band condition and in spite of the apparent formidable aspect of the ex
(5) we can perform various kinds of numerical analysis in order to check the dependence of the band width
band number on the exceptional parameter that arises in our model: the imaginary part of the complex co
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Fig. 1. Band structure forN = 6 in the energy interval 2< x < 3.3 and couplings: (a){5,3,1,1,3,5}; (b) {5 + i,3 + i
2 ,1 + i

5 ,

1− i
5 ,3− i

2 ,5− i}; (c) {5+ 3i,3+ 2i,1 + 3
5 i,1 − 3

5 i,3 − 2i,5 − 3i}; (d) {5+ 3i,3+ 2i,1+ 4
5 i,1− 4

5 i,3− 2i,5− 3i}.

We have made a fairly complete survey of values and we have consistently observed the fact that even sm
of Ii have a strong impact in the number, quality and form of the bands. In Fig. 1 we present theN = 6 case. In a
range betweenx = 2 andx = 3.3 we present four situations with parameters

(5,3,1,1,3,5),(
5+ i,3+ i

2
,1+ i

5
,1− i

5
,3− i

2
,5− i

)
,

(
5+ 3i,3+ 2i,1+ 3

5
i,1− 3

5
i,3− 2i,5− 3i

)
,

(
5+ 3i,3+ 2i,1+ 4

5
i,1− 4

5
i,3− 2i,5− 3i

)

and the band condition appears greatly distorted. First we have four allowed and three forbidden band
range. With the second set of parameters the structure remains the same but there is a pronounced dip in
allowed band which does not show itself previously andit is never present in the Hermitian case. This is only an
announcement of the drastic change that occurs when we use the third set of parameters. The allowed ban
x = 2.3 andx = 2.7 has disappeared as well as the forbidden band aroundx = 3. More changes in the quality o
the bands take place for the fourth set of parameters. No hyperfine calculations are needed to see qualita
dramatic change which shows itself to the naked eye. Notice that all this new band structure has been p
with a very moderate change in the imaginary parts of the couplings.

Let us now turn to a sequence of changes that erases all band structure in a given interval of energy. We
using theN = 4 case. Let us take the following set of parameters:
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(5,4,4,5),(
5+ i,4+ i

2
,4− i

2
,5− i

)
,

(5+ 2i,4+ i,4− i,5− 2i),

(5+ 3i,4+ 2i,4− 2i,5− 3i),

(5+ 4i,4+ 3i,4− 3i,5− 4i),

(5+ 200i,4+ 150i,4− 150i,5− 200i).

In the interval 2.2 < x < 3.2 we see in Fig. 2(a) the band structure for the first set ofreal parameters. Note th
forbidden bands aroundx = 2.3 andx = 2.9. For the second set of parameters the forbidden band aroundx = 2.3 is
no longer there but the second one exhibits the kind of effect described in [9]: we are unable to decide whe
forbidden band is still there or not. Fortunately a further small push to the parameters shows that the band

Fig. 2. Band structure forN = 4 in the energy interval 2.2 < x < 3.2 and couplings: (a){5,4,4,5}; (b) {5 + i,4 + i
2 ,4 − i

2 ,5 − i};
(c) {5+2i,4+ i,4− i,5−2i}; (d) {5+3i,4+2i,4−2i,5−3i}; (e) {5+4i,4+3i,4−3i,5− 4i}; (f) {5+200i,4+150i,4−150i,5−200i}.
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gone away definitely. Furthermore we can still make the remaining allowed band to disappear. The surpris
the curve is extremely reluctant to move up and this can only be done with a drastic change in the imagina
Even so, the last figure of the series shows that we cannot safely say whether the last allowed band has di
or a remaining infinitely narrow portion of the curve is still below+1. After this analysis there is no doubt that w
can have changes in the band spectrum. There are however two kind of changes. If under a small variati
parameters a definite and strong alteration in the structure and number of the bands occurs, we would b
about “sudden changes” as those represented in Fig. 1(c). However other situations are more difficult to
since a large variation on the parameters does not necessarily means a different band structure or at lea
hard to decide whether a definite band has clearly appeared (or disappeared) after this alteration. This is
the case of the situation represented in Fig. 2(f) and very likely the one discussed in Ref. [9]. A compre
survey of the rigidity of the band structure with complexPT -symmetric potentials is presently being written a
will be reported elsewhere [10].

We would like to end up with some comments on theN-odd case. There is in fact another similar expressio
(5) for oddN but since parity should be playing a crucial role inPT -symmetry, we can either ignore theoddcase
or work with a central real coupling in the placeN+1

2 (N odd). We have done so for some particular cases in w
the central atom or ion has a real coupling and the net effect of introducing complex couplings for the oth
potentials is essentially the same as the one described for theN-even case.

Acknowledgements

I would like to thank A. Rodriguez for several illuminating discussions. This research has been p
supported by DGICYT under contract BFM2002-02609.

References

[1] J.M. Cerveró, A. Rodriguez, Eur. Phys. J. B 30 (2002) 239.
[2] J.M. Cerveró, A. Rodriguez, Eur. Phys. J. B 32 (2003) 537.
[3] C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243.
[4] A. Khare, et al., J. Phys. A: Math. Gen. 21 (1988) L501.
[5] J.M. Cerveró, Phys. Lett. A 153 (1991) 1.
[6] G. Lévay, M. Znojil, J. Phys. A: Math. Gen. 35 (2002) 8793.
[7] M. Znojil, J. Phys. A: Math. Gen. 36 (2003) 7639.
[8] R.N. Deb, et al., Phys. Lett. A 307 (2003) 215.
[9] C.M. Bender, et al., Phys. Lett. A 252 (1999) 272.

[10] J.M. Cerveró, A. Rodriguez, in preparation.


	PT-symmetry in one-dimensional quantum periodic potentials
	Acknowledgements
	References


