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Abstract

It is well-known that the first Painlevé equation arises as a coalescence limit of each of the other five Painlevé equations.
This result is important because it shows that, since the solution of the first Painlevé equation cannot be expressed in terms of
known functions, then neither can the solutions of the other five Painlevé equations (except possibly for special values of their
parameters). Here we derive analogous results for three recently derived higher order ordinary differential equations believed to
define new transcendental functions. We show that each of the equations considered has as a coalescence limit a member of th
first Painlevé hierarchy. We thus reduce the problem of showing that the solutions of these three cannot be expressed in terms
of known functions to that of showing that the same is true for the corresponding first Painlevé equations. This represents the
first extension of coalescence results for the Painlevé equations to their higher order analogues.
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1. Introduction

The search for new functions defined as solutions of differential equations led, at the turn of the last century,
to the discovery of the six Painlevé equations [1-4]. One question of particular importance, and indeed of some
controversy, was that of whether the solutions of these equations could be expressed in terms of known functions.
Since it could be shown that the first Painlevé equation arises as a coalescence limit of the other five (see [4]), this
guestion was reduced to that of showing that the solution of the first Painlevé equation defines a new transcendent.
This last problem has in fact only been solved remarkably recently [5-7].

As an example of a coalescence limit, let us consider that between the second Painlevé @yuatiar(y)
with arbitrary parameter,

Vyy —2v3—yv —a=0, (1)
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and the first Painlevé equatidh, in u(x),

um—i—Suz—i—x:O. (2
Making the change of variables (a rescaled version of that in [4])
3 1
— — 9.2 —
v(y)—eu(x)—g, y=2¢ X—my a——@, (3
in (1) leads to the equation
Uy + 3u? +x — 886(u2 + x)u =0, (4)

which in the limite — 0 gives (2). Thus we see th&}; containsP; as a coalescence limit. Coalescence limits of
the six Painlevé equations may be summarized as [4,8]

Py
Py —— Py Py——h
By ®)

and thus we see th& can be obtained from each of the other Painlevé equations.

It is this limiting process that we seek to explore here for higher order analogues of the Painlevé equations. In
particular, we will seek linear transformations of dependent and independent variables, and also of pagameters
(into new parameterdq, Ao, ..., Ay), with coefficients dependent on a parameter

N
v(y) =a(e)u(x) + B(e), y=28(e)x +y(e), aj =ZM(8)A/ + 1 (e). (6)
j=1
We note that all the transformations used in the coalescence processes in (5) are of this form [4] (see, e.g., (3)). It
turns out that consideration of such linear transformations is sufficient for the purposes of the present Letter. Our
requirement is that the expression obtained by solving the transformed equation for the highest derivatiee of
analytic ine ate = 0; the limite — O then gives our coalescence limit.

There are two reasons why our results are important. First, we extend the analogy between certain Painlevé
equations and their higher order analogues. Second, as with Painlevé’s results [4], we reduce the number of
equations for which it must be shown that their solution cannot be expressed in terms of known functions. This last
is of great practical importance in the study of higher order Painlevé equations.

Higher order Painlevé equations may be obtained in a variety of ways. One is by taking similarity reductions of
the higher order members of a hierarchy of completely integrable partial differential equations; thus, for example,
the modified Korteweg—de Vries hierarchy yields e hierarchy [9]. Another is by extending the classification
programme of Painlevé to higher order differential equations [10]. A third approach is that developed in [11-14].
Here we consider coalescence limits for certain higher order analogues of the second Painlevé equation.

2. Examplesfrom the generalized second Painlevé hierarchy

Here we consider two examples from a generalized version afjth@erarchy,
n—1
8;1R”vy+8;12bijvy—yv—a:O. @)
j=1
Herea and allb; are arbitrary constants, = d/dy and

R= 8y2, — 4 — 4vy8;lv, (8)
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is the recursion operator of the modified Korteweg—de Vries hierarchy. The hierarchy of equations (7) consists of
linear combinations of the members of thg hierarchy given in [9]; setting = 1 givesP; (1). We note that here
we have assumed that the coefficient of the non-autonomous term is non-zero, in which case this coefficient may
be rescaled te-1 and the coefficientip (of a term inv) can be set to zero.

Our aim is to show that members of this hierarchy have as coalescence limits corresponding members of the
generalizedP, hierarchy

n—2
O R"u, +970Y BRI uy +x=0, 9)
j=0

where here alB; are arbitrary constants, = d/dx and

R=0%44u +2u, 371, (10)

is the recursion operator of the Kortweg—de Vries hierarchy. The hierarchy (9) corresponds to a special case
(gn—1 = 0) of the hierarchy (3.29) in [12]. As noted in [12] we can without loss of generalityBset = O;
here we assume that the coefficient of the non-autonomous term is non-zero, in which case we may rescale this
coefficient to 1 and also set any constant of integration to zero.
As our first example we take= 2 in (7), which gives (setting1 = ¢)
Vyyyy — 1Ov2vyy — 10vv§ + 6v° + c(vyy — 2v3) —yv—a=0. (11)

Making the change of dependent and independent variables given in (6), i.e.,

v(y)=au(x)+p,  y=dx+y, (12)
we obtain, setting = 68° — 283¢ — By to remove the additional constant term,
Uyxxx — 10a282u2um — 20a/362uuxx + cSZLtm — 10ﬂ232um — 10a232uu§
— 100B5%u? + 6a*8%u® + 3003 B5%u* — 20254 cu® + 6002 f25%u° — 6a B cu?
+600835%u% — 8%xu — 8%y u — 68254 cu + 30845%u — (B8°/a)x = 0. (13)
In this last we now sef = —1/(2a82) andc = 5/(2:28%), which then yields the sought-after dominant terms (the
first four terms of the following),
Urrx + 10t + 5u? + 10u® — 10028%u%u ., — 100%6%uu? + 6a*s%u®
— 15028%u* — 8%xu — 8%y u — (15/(8a*s%))u + (53 /(22%))x = 0. (14)

In this last equation we see that, in order to obtain the sought-after non-autonomous term, we will have to take
83 = 202, We may therefore take either battanda as positive powers of, or both as negative powers oflt is
only the former case that allows us to obtain an expression,fgr, analytic ate = 0. This expression we obtain
by first usingy to remove the term in-(15/(8a*5%))u, by takingy = —(15/(8«*58)) — (B/8%), and then setting
§ = 2¢2 anda = 2¢3; this gives
Uyxxx + 10uuyy + 514)26 +10u®+ Bu + x
— 1661%(10u%ux + 10un? + 15u + 2xu) + 15362%° = 0. (15)

Taking the limite — O then gives as coalescence limit of (11) the equation

uxxxx+10uuxx+5u§+10ug+3u +x=0, (16)
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which s (9) forn = 2 (andBg = B). Thatis, the second member of the generali2gtiierarchy has as coalescence
limit the second member of the generaliz&d hierarchy. This is analogous to the case-= 1 of these two
hierarchies, which is precisely the example given in Section 1 ((7)méthl is (1), and (9) is (2)).

In summary, the change of variables used to obtain this coalescence limit is

15 B

_ 2.3 _ 9.2
U(y)—ZEM(X)—ZLl—éJ, y—28x—2T828—24—88,
5 1 B
CSom T TR T "

which then yields (15) and in the limit— 0 (16).

We now make two remarks on the above calculation. The first is that it is only by including the non-dominant
termsc(vy, — 2v3) in (11) that we are able to correct the coefficient8fto be as in (14) above. That is, if we
were to take the? hierarchy to be as in (7) but with all; =0, as in [9], then we would not be able to obtain the
sought-after coalescence limit. It is for this reason that we have considered the genetalidethrchy presented
here, i.e., (7), rather than that in [9]. We note that this ease2 of (7), i.e., (11), can be found in [15]. Our second
remark is that the equation we have obtained as a coalescence limit is the second member of our geReralized
hierarchy (9), but that equally we could have obtained as coalescence limit equation (1@ wifh i.e., the
second member of the origin&l hierarchy (allB; = 0 in (9)) as given by Kudryashov [16].

As our second example we take the case 3 of (7), withb1 = c andbs = d,

Vyyyyyy — 14v2vyyyy — 56vvyvyyy — 42vv§y — 70v)2,vyy + 7Ov4vyy + 140113115
— 2007 +d (vyyyy — 10020y, — 101)115 +60°) + c(vyy — 2v3) —yv—a=0. (18)

We make as before the change of dependent and independent variables given in (6), i.e., (12),@and,3eek

d, ¢ anda in terms of a parametersuch that the resulting equation, when solveddgs, «xx, gives an expression
analytic ate = 0, and has as the limit— 0 Eq. (9) withn = 3. We do not give details of our calculation here, but
summarize our result as follows. The change of variables

45 35 B 3c
viy) =4e7ulx) - >3- 228,54  pbgl2 | 913,26

7 35 C 1 B C
= 50,180 CT 519,36 T 5480 9T T509,63  iL21 17,35

y=282x—

d

(19)
made in (18), yields the equation

Uexrxrx + Luttgrr + 28u ity + 2102, + 700Uy + 70uu? + 35u* + C(uyx + 3u®) + Bu +x
— 128M(TuPuxrx + 28uttxttyrx + 21un?, + 352U + 700U, + 105%u2 + 42u° + Cu® + xu)
+ 2867202 (uuxx + 2u°u? +u®) — 524288@%%" =0, (20)

which, in the limite — 0, gives

Uxxrxx + 1ty + 28ty + 2102, + 70u%u . + 70uu? + 35u*
+C(uxx+3u2)+Bu+x=0. (21)

This last is (9) fom = 3, with By = C andBp = B.

Similar remarks hold as for our previous example: that we could not have achieved the sought-after coalescence
limit if instead of the generalized case (18) we had considered the third member Bf thierarchy in [9] (i.e.,
the casel = ¢ = 0 here); and that we could have obtained as a coalescence limit the corresponding member of the
non-generalized, hierarchy (by takingd = C =0 in the above).
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Clearly we expect that higher order members of the generalgehlierarchy (7) have as coalescence limits
corresponding higher order members of the generalBelierarchy (9), i.e., including all non-dominant terms
with coefficientsBy, ..., B,—2.

3. A new higher order second Painlevé equation

In this section we consider the second member of an alternBjive@erarchy presented in [14]. This equation
was originally derived as a system of equations,

1

Z(vyy — 3vvy + v+ 6vw) +cv+g3y—y2=0, (22)
:—L(w + 3w? + 3vw +3v2w) +cw—38=0 (23)
4 \yy y 2=Y
wheregs, ¢, y2 andd; are all constants. The system (22), (23) has the underlying linear problem
1
V,=FV, §g3WA=Hw, (24)
where
—A+3v 1
.7:= 2 ) 25
( —w A — %v) (25)
—wy — 2vw — 2w 2w—vy+v2
—2g3y —4A3 —4ch 4 20|  + 200+ 402+ 4c
H=-] vwy, — 2w, — wyy wy + 2Zvw + 2w . (26)
+ w? 4 202w — 2hvw +2g3y + 4x3 + 4ch — 2y

— 42y — 455
Solving (22) forw and substituting in (23) then gives a fourth order equatiorvfdhe linear problem for which
given in [14] is then obtained from (25), (26).
It is the casegs # O that defines our higher order analogue of the second Painlevé equation, and it is this
case that we consider here. Singe# 0, we may assume without loss of generality that= 0 andgz = 1. The
corresponding fourth order equation farwhere we also séb = (b/24) — (¢?/3) — (1/2), is then given by

2 2
UyyyUy | 3Vyy Uy 2 Uyy | 9 2
Vyyyy = ZT + 2 2 2 + 5vvyy + 8yT + EUU),
2 2
vy ) 5
—8y— +82 — 215 — 12003 — 8yo? — by + 8. 27)
v v 2 v

We now consider obtaining a coalescence limit of Eq. (27). We make the change of dependent and independent
variables given in (6), i.e., (12), and seekp, v, 8, c andb such that the resulting equation, when solved for
uxyxx, gives an expression analytic at= 0, and has as the limi — 0, as might be expected, the fourth order
member of the first Painlevé hierarchy (9), or a special case thereof.

We do not give details of our calculations here, but summarize our result as follows. The change of variables

1 . 5 5 5
v(y)=28u(x)—§, Yy=€&X+ 5257

2162 T o T 3 (28)

1 Note there is a missing factor of @) in the lower left component of given in (99) in [14].
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made in (27), yields the equation
Urxx + 10uutyy + 5u2 4 1003
+x — e8(12utxvxx — 125ttxcx — 2, + 1200%uc, + 30uu? + 1450* + 14xu)
+ 6816(6u2uxxxx —12uuttyxy — 9uu§x + 12u)26uxx + 80u3uxx + Axuyy + 3014214)%
+ 4u, + 125° + 16vu?)
— 1262460 U x + 12xuury + 30032 — 12vu? + 12uu, + 140° + 32vu> — x?)

+ 72532(20147 + 8xut — xzu) =0, (29)
which, in the limite — 0, gives
Uyxxx + 10uuyy + SME + 10113 +x=0. (30)

Thus we see that the second member of our altern&jvieierarchy, i.e., Eq. (27), has as a coalescence limit a
special caseRp = 0) of the second membet & 2) of the P, hierarchy (9). That is, Eq. (27) has as a coalescence
limit the second member of the origin& hierarchy of Kudryashov [16]. (In fact, (28) is not the only change of
variables which yields (30) as a coalescence limit of (27).)

4. Conclusions

In this Letter we have considered coalescence limits for certain members of two dititéerarchies. We
have shown that these equations have as coalescence limits corresponding members of the first Painlevé hierarchy
Thus we at once both extend the analogy between the higher order analogues of the second and first Painlevé
equations with those equations themselves, and at the same time reduce the number of equations for which it must
be shown that their solutions cannot be expressed in terms of known functions. Thus any proof that the higher order
first Painlevé equations (generalized or not) define new transcendents now also serves to show that neither can the
general solutions of (the general case of) the higher order second Painlevé equations studied here be expressed i
terms of known functions.

Other aspects of coalescence limits will be addressed in subsequent papers.
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