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Coalescence limits for higher order Painlevé equations
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Abstract

It is well-known that the first Painlevé equation arises as a coalescence limit of each of the other five Painlevé equations.
This result is important because it shows that, since the solution of the first Painlevé equation cannot be expressed in terms of
known functions, then neither can the solutions of the other five Painlevé equations (except possibly for special values of their
parameters). Here we derive analogous results for three recently derived higher order ordinary differential equations believed to
define new transcendental functions. We show that each of the equations considered has as a coalescence limit a member of the
first Painlevé hierarchy. We thus reduce the problem of showing that the solutions of these three cannot be expressed in terms
of known functions to that of showing that the same is true for the corresponding first Painlevé equations. This represents the
first extension of coalescence results for the Painlevé equations to their higher order analogues.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The search for new functions defined as solutions of differential equations led, at the turn of the last century,
to the discovery of the six Painlevé equations [1–4]. One question of particular importance, and indeed of some
controversy, was that of whether the solutions of these equations could be expressed in terms of known functions.
Since it could be shown that the first Painlevé equation arises as a coalescence limit of the other five (see [4]), this
question was reduced to that of showing that the solution of the first Painlevé equation defines a new transcendent.
This last problem has in fact only been solved remarkably recently [5–7].

As an example of a coalescence limit, let us consider that between the second Painlevé equationPII , in v(y)
with arbitrary parametera,

(1)vyy − 2v3 − yv − a = 0,
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and the first Painlevé equationPI , in u(x),

(2)uxx + 3u2 + x = 0.

Making the change of variables (a rescaled version of that in [4])

(3)v(y)= εu(x)− 1

8ε5
, y = 2ε2x − 3

32ε10
, a = − 1

128ε15
,

in (1) leads to the equation

(4)uxx + 3u2 + x − 8ε6(u2 + x)u= 0,

which in the limitε→ 0 gives (2). Thus we see thatPII containsPI as a coalescence limit. Coalescence limits of
the six Painlevé equations may be summarized as [4,8]

(5)PIII

PVI PV PII PI

PIV

and thus we see thatPI can be obtained from each of the other Painlevé equations.
It is this limiting process that we seek to explore here for higher order analogues of the Painlevé equations. In

particular, we will seek linear transformations of dependent and independent variables, and also of parametersai
(into new parametersA1,A2, . . . ,AN ), with coefficients dependent on a parameterε,

(6)v(y)= α(ε)u(x)+ β(ε), y = δ(ε)x + γ (ε), ai =
N∑
j=1

λj (ε)Aj +µ(ε).

We note that all the transformations used in the coalescence processes in (5) are of this form [4] (see, e.g., (3)). It
turns out that consideration of such linear transformations is sufficient for the purposes of the present Letter. Our
requirement is that the expression obtained by solving the transformed equation for the highest derivative ofu be
analytic inε at ε = 0; the limit ε→ 0 then gives our coalescence limit.

There are two reasons why our results are important. First, we extend the analogy between certain Painlevé
equations and their higher order analogues. Second, as with Painlevé’s results [4], we reduce the number of
equations for which it must be shown that their solution cannot be expressed in terms of known functions. This last
is of great practical importance in the study of higher order Painlevé equations.

Higher order Painlevé equations may be obtained in a variety of ways. One is by taking similarity reductions of
the higher order members of a hierarchy of completely integrable partial differential equations; thus, for example,
the modified Korteweg–de Vries hierarchy yields thePII hierarchy [9]. Another is by extending the classification
programme of Painlevé to higher order differential equations [10]. A third approach is that developed in [11–14].
Here we consider coalescence limits for certain higher order analogues of the second Painlevé equation.

2. Examples from the generalized second Painlevé hierarchy

Here we consider two examples from a generalized version of thePII hierarchy,

(7)∂−1
y R̄nvy + ∂−1

y

n−1∑
j=1

bj R̄
j vy − yv− a = 0.

Herea and allbj are arbitrary constants,∂y = d/dy and

(8)R̄ = ∂2
y − 4v2 − 4vy∂−1

y v,
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is the recursion operator of the modified Korteweg–de Vries hierarchy. The hierarchy of equations (7) consists of
linear combinations of the members of thePII hierarchy given in [9]; settingn= 1 givesPII (1). We note that here
we have assumed that the coefficient of the non-autonomous term is non-zero, in which case this coefficient may
be rescaled to−1 and the coefficientb0 (of a term inv) can be set to zero.

Our aim is to show that members of this hierarchy have as coalescence limits corresponding members of the
generalizedPI hierarchy

(9)∂−1
x Rnux + ∂−1

x

n−2∑
j=0

BjR
jux + x = 0,

where here allBj are arbitrary constants,∂x = d/dx and

(10)R = ∂2
x + 4u+ 2ux∂

−1
x ,

is the recursion operator of the Kortweg–de Vries hierarchy. The hierarchy (9) corresponds to a special case
(gn−1 = 0) of the hierarchy (3.29) in [12]. As noted in [12] we can without loss of generality setBn−1 = 0;
here we assume that the coefficient of the non-autonomous term is non-zero, in which case we may rescale this
coefficient to 1 and also set any constant of integration to zero.

As our first example we taken= 2 in (7), which gives (settingb1 = c)
(11)vyyyy − 10v2vyy − 10vv2

y + 6v5 + c(vyy − 2v3) − yv − a = 0.

Making the change of dependent and independent variables given in (6), i.e.,

(12)v(y)= αu(x)+ β, y = δx + γ,
we obtain, settinga = 6β5 − 2β3c− βγ to remove the additional constant term,

uxxxx − 10α2δ2u2uxx − 20αβδ2uuxx + cδ2uxx − 10β2δ2uxx − 10α2δ2uu2
x

− 10αβδ2u2
x + 6α4δ4u5 + 30α3βδ4u4 − 2α2δ4cu3 + 60α2β2δ4u3 − 6αβδ4cu2

(13)+ 60αβ3δ4u2 − δ5xu− δ4γ u− 6β2δ4cu+ 30β4δ4u− (
βδ5/α

)
x = 0.

In this last we now setβ = −1/(2αδ2) andc= 5/(2α2δ4), which then yields the sought-after dominant terms (the
first four terms of the following),

uxxxx + 10uuxx + 5u2
x + 10u3 − 10α2δ2u2uxx − 10α2δ2uu2

x + 6α4δ4u5

(14)− 15α2δ2u4 − δ5xu− δ4γ u− (
15/

(
8α4δ4))u+ (

δ3/(
2α2))x = 0.

In this last equation we see that, in order to obtain the sought-after non-autonomous term, we will have to take
δ3 = 2α2. We may therefore take either bothδ andα as positive powers ofε, or both as negative powers ofε. It is
only the former case that allows us to obtain an expression foruxxxx analytic atε = 0. This expression we obtain
by first usingγ to remove the term in−(15/(8α4δ4))u, by takingγ = −(15/(8α4δ8))− (B/δ4), and then setting
δ = 2ε2 andα = 2ε3; this gives

uxxxx + 10uuxx + 5u2
x + 10u3 +Bu+ x

(15)− 16ε10(10u2uxx + 10uu2
x + 15u4 + 2xu

) + 1536ε20u5 = 0.

Taking the limitε→ 0 then gives as coalescence limit of (11) the equation

(16)uxxxx + 10uuxx + 5u2
x + 10u3 +Bu+ x = 0,
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which is (9) forn= 2 (andB0 = B). That is, the second member of the generalizedPII hierarchy has as coalescence
limit the second member of the generalizedPI hierarchy. This is analogous to the casen = 1 of these two
hierarchies, which is precisely the example given in Section 1 ((7) withn= 1 is (1), and (9) is (2)).

In summary, the change of variables used to obtain this coalescence limit is

v(y)= 2ε3u(x)− 1

24ε7 , y = 2ε2x − 15

215ε28 − B

24ε8 ,

(17)c= 5

27ε14
, a = − 1

216ε35
− B

28ε15
,

which then yields (15) and in the limitε→ 0 (16).
We now make two remarks on the above calculation. The first is that it is only by including the non-dominant

termsc(vyy − 2v3) in (11) that we are able to correct the coefficient ofu3 to be as in (14) above. That is, if we
were to take thePII hierarchy to be as in (7) but with allbj = 0, as in [9], then we would not be able to obtain the
sought-after coalescence limit. It is for this reason that we have considered the generalizedPII hierarchy presented
here, i.e., (7), rather than that in [9]. We note that this casen= 2 of (7), i.e., (11), can be found in [15]. Our second
remark is that the equation we have obtained as a coalescence limit is the second member of our generalizedPI
hierarchy (9), but that equally we could have obtained as coalescence limit equation (16) withB = 0, i.e., the
second member of the originalPI hierarchy (allBj = 0 in (9)) as given by Kudryashov [16].

As our second example we take the casen= 3 of (7), withb1 = c andb2 = d ,

vyyyyyy − 14v2vyyyy − 56vvyvyyy − 42vv2
yy − 70v2

yvyy + 70v4vyy + 140v3v2
y

(18)− 20v7 + d(vyyyy − 10v2vyy − 10vv2
y + 6v5) + c(vyy − 2v3) − yv − a = 0.

We make as before the change of dependent and independent variables given in (6), i.e., (12), and seekα, β , γ , δ,
d , c anda in terms of a parameterε such that the resulting equation, when solved foruxxxxxx, gives an expression
analytic atε = 0, and has as the limitε→ 0 Eq. (9) withn= 3. We do not give details of our calculation here, but
summarize our result as follows. The change of variables

v(y)= 4ε5u(x)− 1

25ε9 , y = 2ε2x − 35

228ε54 − B

26ε12 − 3C

213ε26,

(19)d = 7

29ε18, c= 35

219ε36 + C

24ε8 , a = − 1

229ε63 − B

211ε21 − C

217ε35,

made in (18), yields the equation

uxxxxxx + 14uuxxxx + 28uxuxxx + 21u2
xx + 70u2uxx + 70uu2

x + 35u4 +C(
uxx + 3u2) +Bu+ x

− 128ε14(7u2uxxxx + 28uuxuxxx + 21uu2
xx + 35u2

xuxx + 70u3uxx + 105u2u2
x + 42u5 +Cu3 + xu)

(20)+ 286720ε28(u4uxx + 2u3u2
x + u6) − 5242880ε42u7 = 0,

which, in the limitε→ 0, gives

uxxxxxx + 14uuxxxx + 28uxuxxx + 21u2
xx + 70u2uxx + 70uu2

x + 35u4

(21)+C(
uxx + 3u2) +Bu+ x = 0.

This last is (9) forn= 3, withB1 = C andB0 = B.
Similar remarks hold as for our previous example: that we could not have achieved the sought-after coalescence

limit if instead of the generalized case (18) we had considered the third member of thePII hierarchy in [9] (i.e.,
the cased = c= 0 here); and that we could have obtained as a coalescence limit the corresponding member of the
non-generalizedPI hierarchy (by takingB = C = 0 in the above).
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Clearly we expect that higher order members of the generalizedPII hierarchy (7) have as coalescence limits
corresponding higher order members of the generalizedPI hierarchy (9), i.e., including all non-dominant terms
with coefficientsB0, . . . ,Bn−2.

3. A new higher order second Painlevé equation

In this section we consider the second member of an alternativePII hierarchy presented in [14]. This equation
was originally derived as a system of equations,

(22)
1

4

(
vyy − 3vvy + v3 + 6vw

) + cv + g3y − γ2 = 0,

(23)
1

4

(
wyy + 3w2 + 3vwy + 3v2w

) + cw− δ2 = 0,

whereg3, c, γ2 andδ2 are all constants. The system (22), (23) has the underlying linear problem

(24)�y =F�,
1

2
g3�λ =H�,

where

(25)F =
(−λ+ 1

2v 1
−w λ− 1

2v

)
,

(26)H = 1

4




−wy − 2vw− 2λw 2w− vy + v2

− 2g3y − 4λ3 − 4cλ+ 2γ2 + 2λv+ 4λ2 + 4c
vwy − 2λwy −wvy wy + 2vw+ 2λw

+w2 + 2v2w− 2λvw + 2g3y + 4λ3 + 4cλ− 2γ2

− 4λ2w− 4δ2


 .

Solving (22) forw and substituting in (23) then gives a fourth order equation forv, the linear problem for which
given in [14] is then obtained from (25), (26).1

It is the caseg3 �= 0 that defines our higher order analogue of the second Painlevé equation, and it is this
case that we consider here. Sinceg3 �= 0, we may assume without loss of generality thatγ2 = 0 andg3 = 1. The
corresponding fourth order equation forv, where we also setδ2 = (b/24)− (c2/3)− (1/2), is then given by

vyyyy = 2
vyyyvy

v
+ 3

2

v2
yy

v
− 2

vyyv
2
y

v2 + 5v2vyy + 8y
vyy

v
+ 5

2
vv2
y

(27)− 8y
v2
y

v2 + 8
vy

v
− 5

2
v5 − 12cv3 − 8yv2 − bv+ 8

y2

v
.

We now consider obtaining a coalescence limit of Eq. (27). We make the change of dependent and independent
variables given in (6), i.e., (12), and seekα, β , γ , δ, c andb such that the resulting equation, when solved for
uxxxx , gives an expression analytic atε = 0, and has as the limitε → 0, as might be expected, the fourth order
member of the first Painlevé hierarchy (9), or a special case thereof.

We do not give details of our calculations here, but summarize our result as follows. The change of variables

(28)v(y)= 2εu(x)− 1

3ε7 , y = ε3x + 5

216ε21, c= − 5

96ε14, b = 5

36ε28,

1 Note there is a missing factor of 1/(6u) in the lower left component ofF given in (99) in [14].
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made in (27), yields the equation

uxxxx + 10uuxx + 5u2
x + 10u3

+ x − ε8(12uuxxxx − 12uxuxxx − 9u2
xx + 120u2uxx + 30uu2

x + 145u4 + 14xu
)

+ 6ε16(6u2uxxxx − 12uuxuxxx − 9uu2
xx + 12u2

xuxx + 80u3uxx + 4xuxx + 30u2u2
x

+ 4ux + 125u5 + 16xu2)
− 12ε24(60u4uxx + 12xuuxx + 30u3u2

x − 12xu2
x + 12uux + 140u6 + 32xu3 − x2)

(29)+ 72ε32(20u7 + 8xu4 − x2u
) = 0,

which, in the limitε→ 0, gives

(30)uxxxx + 10uuxx + 5u2
x + 10u3 + x = 0.

Thus we see that the second member of our alternativePII hierarchy, i.e., Eq. (27), has as a coalescence limit a
special case (B0 = 0) of the second member (n= 2) of thePI hierarchy (9). That is, Eq. (27) has as a coalescence
limit the second member of the originalPI hierarchy of Kudryashov [16]. (In fact, (28) is not the only change of
variables which yields (30) as a coalescence limit of (27).)

4. Conclusions

In this Letter we have considered coalescence limits for certain members of two distinctPII hierarchies. We
have shown that these equations have as coalescence limits corresponding members of the first Painlevé hierarchy.
Thus we at once both extend the analogy between the higher order analogues of the second and first Painlevé
equations with those equations themselves, and at the same time reduce the number of equations for which it must
be shown that their solutions cannot be expressed in terms of known functions. Thus any proof that the higher order
first Painlevé equations (generalized or not) define new transcendents now also serves to show that neither can the
general solutions of (the general case of) the higher order second Painlevé equations studied here be expressed in
terms of known functions.

Other aspects of coalescence limits will be addressed in subsequent papers.
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