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SEPARATION OF VARIABLES IN A NONLINEAR WAVE EQUATION

WITH A VARIABLE WAVE SPEED

P. G. Estévez∗ and C. Z. Qu†

We develop a generalized conditional symmetry approach for the functional separation of variables in a non-

linear wave equation with a nonlinear wave speed. We use it to obtain a number of new (1+1)-dimensional

nonlinear wave equations with variable wave speeds admitting a functionally separable solution. As a con-

sequence, we obtain exact solutions of the resulting equations.
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The classical theory of symmetries of differential equations due to Lie [1], [2] is a powerful tool for
studying the separation of variables of linear partial differential equations [3]. Recently, two of the more
interesting extensions of the Lie theory, the nonclassical method [4] and the generalized conditional sym-
metry (GCS) approach [5]–[7], have been used to study the functional separation of variables of nonlinear
diffusion equations with convection and source terms [8], [9]. Another interesting example is the nonlinear
wave equation with a variable wave speed,

utt = (B(u)ux)x +A(u), B(u) �= const, (1)

which has significant applications in wave propagation and applied sciences.
In this paper, we use the GCS method to study the functional separation of variables of Eq. (1). A

solution of (1) is said to be functionally separable if there exist functions q(u), φ(t), and ψ(x) such that

q(u) = φ(t) + ψ(x). (2)

The classical additively separable solution and product separable solution are particular cases of the above
functional separable solution. In the case where B = 1, the functional separation of variables in Eq. (1) was
discussed by several authors using different kinds of methods [10]. Equations admitting separable solutions
include the Bullough–Dodd, sine-Gordon, and sinh-Gordon equations. The case where A = 0 with B = eau

or B = ua was discussed in [11] using the classical Lie method.

Definition. An evolutionary vector field

V = η(t, x, u, . . . )
∂

∂u
(3)

is said to be a GCS of (1) if

V (2)
(
utt − (B(u)ux)x −A(u)

)∣∣
E∩W = 0,
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where E is the solution manifold of (1) and W is a second-order system of (1) obtained by appending the
condition η = 0 and its partial derivatives with respect to x to the invariant surface; V (2) is the second
prolongation of the infinitesimal operator V .

An important fact is that if (1) admits the GCS,

V = (uxt +G(u)uxut)
∂

∂u
, G =

q′′(u)
q′(u)

, (4)

then (1) has functionally separable solution (2).
A straightforward calculation gives

V (2)
(
utt − (B(u)ux)x −A(u)

)∣∣
E∩W =

= 3
(
B′′ −GB′ − B′ 2

B

)
utuxuxx +

[
G′′ − 2GG′ − B′

B
(G′ −G2)

]
uxu

3
t +

+
[
B′′′ − B′

B
(B′′ +GB′)−B(G′′ − 2GG′)−GB′′ −G2B′

]
utu

3
x +

+
[
A′′ +

(
G− B′

B

)
A′ +

(
3G′ − 2G2 − B′

B
G

)
A

]
utux.

The vanishing of this expression leads to B, G, and A satisfying

B′′ −GB′ − B′ 2

B
= 0, (5a)

G′′ − 2GG′ − B′

B
(G′ −G2) = 0, (5b)

A′′ +
(
G− B′

B

)
A′ +

(
3G′ − 2G2 − B′

B
G

)
A = 0. (5c)

We consider two cases for Eq. (5b):

Case 1. G′ −G2 = 0. In this case, G is given by

G = 0 or G = − 1
u+ u0

,

where u0 can be chosen to be zero by translating u. The classical additively separable solution is given by
G = 0; G = −1/u then gives the product separable solution. We consider each case separately.

Case 1a. G = −1/u. Substituting G = −1/u in (5a) and (5c) and scaling u, we find

B = ua, a = const,

and A satisfying

A′′ − a+ 1
u

A′ +
a+ 1
u2

A = 0,

which is solved by

A = c1u+ c2u
a+1,
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where c1 and c2 are arbitrary constants (here and hereafter). Furthermore, from (4), we have q = log u.
We have thus established that the equation

utt = (uaux)x + c1u+ c2u
a+1 (6)

admits the product separable solution

u = φ(t)ψ(x), (7)

where φ(t) and ψ(x) satisfy the system

φ′′ − c1φ− λφa+1 = 0, (8a)

(ψaψ′)′ + c2ψ
a+1 − λψ = 0, (8b)

and λ denotes the separation constant. Equation (8a) can be integrated as

φ′ 2 − c1φ
2 − 2λ

a+ 2
φa+2 = d1 if a �= −2,

φ′ 2 − c1φ
2 − 2λ logφ = d1 if a = −2.

The first integral of Eq. (8b) is

ψ′ 2 +
c2

a+ 1
ψ2 − 2λ

a+ 2
ψ2−a = d2ψ

−2a if a �= −2, a �= −1,

ψ′ 2 − c2ψ
2 − 2λψ4 logψ = d2ψ

4 if a = −2,

ψ′ 2 + 2c2ψ2 logψ − 2λψ3 = d2ψ
2 if a = −1.

Consequently, the solutions for φ and ψ can be written implicitly as follows:

1a.1. If a �= −2,−1,
∫ φ(t) dz√

2λz2+a/(a+ 2) + c1z2 + d1

= t,

∫ ψ(x) dy√
2λy2−a/(a+ 2)− c2y2/a+ 1 + d2y−2a

= x.

1a.2. If a = −2,
∫ φ(t) dz√

c1z2 + 2λ log z + d1

= t,

∫ ψ(x) dy√
2λy4 log y + c2y2 + d2y4

= x.

1a.3. If a = −1,
∫ φ(t) dz√

c1z2 + 2λz + d1

= t,

∫ ψ(x) dy√
2λy3 − 2c2y2 log y + d2y2

= x.
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Case 1b. G = 0. In this subcase,

B = eu, A = c1 + c2e
u, q = u.

We find that the equation

utt = (euux)x + c1 + c2e
u (9)

admits the additively separable solution

u = φ(t) + ψ(x), (10)

where φ(t) and ψ(x) satisfy the system

φ′′ − c1 − λeφ = 0,

(eψψ′)′ + c2e
ψ − λ = 0,

(11)

which can be integrated as follows:

1b.1. If c2 > 0,
∫ φ(t) dz√

2λez + 2c1z + d1

= t,

ψ(x) = log
[
λ

c2
− d2 cos

√
c2x

]
.

1b.2. If c2 < 0,
∫ φ(t) dz√

2λez + 2c1z + d1

= t,

ψ(x) = log
[
λ

c2
− d2 cosh

√
−c2x

]
.

Case 2. G′ −G2 �= 0. We can define h(u) such that

G = −h′

h
=⇒ q′ ∼ 1

h
.

From (5b), we find

B =
B0h

′′

h
, (12)

where B0 is a constant and can be chosen as ±1 by scaling t. Substituting G = −h′/h in (5a), we also find
B′/B = a/h and a = const, and B can hence be expressed in terms of h by

B′

B
=

a

h
. (13)

Obviously, h satisfies

hh′′′ − h′h′′ = ah′′,

which can be integrated as

hh′′ − h′ 2 = ah′ + b. (14)

We note that we explicitly assume that a �= 0 in what follows because it is easy to see from Eq. (13) that
a = 0 =⇒ B = const, which corresponds to the case extensively considered by other authors in [10], [11].

For a �= 0, two subcases arise:
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Case 2a. b = 0. Solving (14), we obtain

h =
a

d
+ cedu,

where d is an arbitrary constant. Hence,

B = − B0d
2edu

a/(dc) + edu
.

By scaling and translating u, we can set d = ±1 and a/c = ±1. Four possibilities are distinguished:

2a.1. B0 = −d = 1, a/c = 1. In this case,

B =
1

eu − 1
, h = c(e−u − 1), q ∼ log(eu − 1).

Substituting B and h in (5c) implies that A satisfies the equation

A′′ +A′ +
2

eu − 1
A = 0,

which has the general solution

A(u) = c1
[
1− 2e−u + 2(e−u − e−2u) log(eu − 1)

]
+ c2(e−2u − e−u).

We have thus established that the equation

utt =
(

ux
eu − 1

)
x

+ c1
[
1− 2e−u + 2(e−u − e−2u) log(eu − 1)

]
+ c2(e−2u − e−u) (15)

admits the functionally separable solution

u = log[1 + φ(t)ψ(x)]. (16)

Substituting (16) in (15) implies that φ(t) and ψ(x) satisfy the system

φ′ 2 = 2c1φ2 logφ+ (α− c1)φ2 − 2λφ− β,

ψ′ 2 = 2c1ψ2 logψ + βψ4 − 2λψ3 + (c1 − c2 − α)ψ2,
(17)

where λ, α, and β are arbitrary constants. The implicit solution of (17) is given by

∫ φ(t) dz√
2c1z2 log z + (α − c1)z2 − 2λz − β

= t,

∫ ψ(x) dy√
2c1y2 log y + βy4 − 2λy3 + (c1 − c2 − α)y2

= x.

(18)

The remaining cases are studied similarly, we list the results as follows:
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2a.2. B0 = −d = −1, a/c = 1.

B =
eu

1 + eu
, h = c(1 + eu), q = u− log(1 + eu).

The resulting equation is

utt =
(

eu

eu + 1
ux

)
x

− c1

[
1 + 2eu + 2(eu + e2u) log

eu

eu + 1

]
+ c2(e2u + eu), (19)

and the functionally separable solution is

u = log
[

1
φ(t)ψ(x) − 1

]
. (20)

The ordinary differential equations for φ and ψ are

φ′ 2 = 2c1φ2 logφ+ (α− c1)φ2 − 2λφ− β,

ψ′ 2 = −2c1ψ2 logψ − βψ4 − 2λψ3 + (α− c1 − c2)ψ2,
(21)

which can be integrated as

∫ φ(t) dz√
2c1z2 log z + (α− c1)z2 − 2λz − β

= t,

∫ ψ(x) dy√
−2c1y2 log y − βy4 − 2λy3 + (α − c1 − c2)y2

= x.

(22)

2a.3. B0 = −d = −1, a/c = −1.

B =
eu

eu − 1
, h = c(eu − 1), q = −u+ log(eu − 1),

utt =
(

eu

eu − 1
ux

)
x

+ c1

[
2eu − 1− 2(e2u − eu) log

eu

eu − 1

]
+ c2(e2u − eu), (23)

u = log
[

1
1− φ(t)ψ(x)

]
. (24)

The equations for φ and ψ are also Eqs. (21). Therefore, the solutions for φ and ψ are given by (22).

2a.4. B0 = d = −1, a/c = −1.

B =
1

1 + eu
, h = c(1 + e−u), q = log(1 + eu),

utt =
(

ux
eu + 1

)
x

+ c1
[
2e−u + 1− 2(e−2u + e−u) log(eu + 1)

]
− c2(e−2u + e−u), (25)

u = log [φ(t)ψ(x) − 1] . (26)

As in the previous case, φ and ψ must satisfy Eqs. (21), and its solutions are implicitly given by (22).
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Case 2b. b �= 0. With H(h) = hu introduced in (6), H satisfies

hHHh = H2 + aH + b,

which is integrated to ∫ H z dz

z2 + az + b
= log

(
h

h0

)
, h0 = const. (27)

Further, for ∆ ≡ a2 − 4b, we must consider three cases separately.

2b.1. ∆ = 0. Equation (27) is integrated to

(
h′ +

a

2

)
ea/(2h

′+a) =
h

h0
,

and h therefore satisfies the equation

H ≡ h′ = f1(h).

2b.2. ∆ > 0 =⇒ ∆ = c2. In this case, (27) is integrated to

(
h′ +

a+ c

2

)c+a(
h′ +

a− c

2

)c−a
=

(
h

h0

)2c

.

We rewrite it implicitly as

h′ = f2(h).

2b.3. ∆ < 0 =⇒ ∆ = −c2. In this case, (27) is integrated to

[
1 +

(
2h′ + a

c

)2]
exp

[
−2

a

c
arctan

(
2h′ + a

c

)]
=

(
h

h0

)2

.

We rewrite it implicitly as

h′ = f3(h).

In each case, h can be determined implicitly by

∫ h dz

fi(z)
= u,

B is given by

Bi(u) = −f2
i + afi + b

h2
, i = 1, 2, 3,

and A satisfies

h2A′′ − h(fi + a)A′ − (2f2
i + 2afi + 3b)A = 0.

The corresponding equation has a separable solution of the form

∫ u dz

h(z)
= φ(t) + ψ(x).
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Conclusions

We have used the GCS approach to obtain solutions that are functionally separable. We note that
these separable solutions cannot be obtained using the Lie classical symmetry method. The approach can
be further developed to study higher nonlinear wave equations.

As can be easily seen, the explicit behavior of the solutions depends on the choice of many arbitrary
constants. This means that there are many different cases. The explicit study of these cases and their
physical and mathematical significance is beyond the scope of this paper and will be the subject of further
research.
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