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Abstract

We consider the problem of how to prize general securities whose payoff at maturity only depends on the interest rate rT

at the time of exercise, where rt is supposed to be a stochastic Feller process. We show how to generalize the results of Cox

et al. [Econometrica 53 (2) (1985) 385] regarding bond valuation to a situation where the stochastic evolution of rt under

the martingale probability involves time-dependent coefficients and the payoff is arbitrary. The solution to this problem is

given in terms of the propagator for the heat operator with a potential. This propagator is constructed in terms of a

classical harmonic oscillator with time-dependent frequency.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the problem of how to prize generic European interest rate securities.
These are financial instruments whose payoff at maturity time T depends only on the terminal value of the
short interest rate rT , i.e., the payoff function isYðrT Þ whereY is an arbitrary continuous function and T is the
exercise time of the security. We assume that the evolution of rt is described by the stochastic differential
equation (SDE)

drt ¼ aðt; rtÞdtþ bðt; rtÞdW t, (1)

where W t is a Brownian motion (BM) process and a and b2 are assumed to be affine functions in x; namely
they can be written as

aðt;xÞ ¼ qðtÞ � 2mðtÞx and b2
ðt;xÞ ¼ s2ðtÞx (2)

for certain functions of time qðtÞ; mðtÞ and sðtÞ.
e front matter r 2006 Elsevier B.V. All rights reserved.
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The (actual) t-price Vt;T of the above security given that rt � x is a known value is the expected value of the
payoff function times the relevant discount factor:

Vt;T ¼ EðYðrT Þe
�
R T

t
rs ds
jrt ¼ xÞ. (3)

We suppose that the relevant expectation already discounts the market price of risk, i.e., that the expectation is
taken with respect to the risk-neutral or martingale probability. Further based on general considerations on
the conditional expectation, for given values of tpT , the price Vt;T can be written as a simple function of x,
i.e., there exists a function vt;T : R! R such that

EðYðrT Þe
�
R T

t
rs ds
jrt ¼ xÞ ¼ vt;T ðxÞ. (4)

The function defined by the path integral (4) can be found as the solution of the final value problem

b2

2

q2

qx2
þ aðt;xÞ

q
qx
� xþ

q
qt

� �
vt;T ðxÞ ¼ 0; toT ; vT ;T ðxÞ ¼ YðxÞ. (5)

This is the content of the Feynman–Kac formula, a generalization of the well known connection between the
Schrödinger operator and the Feynman path integral of quantum mechanics (see, for example, Ref. [1]).

Setting Y ¼ 1 yields the price at t of a bond with maturity T, denoted as pt;T ðxÞ. If, in addition, we assume
constant coefficients this is the classical Cox–Ingersoll–Ross (CIR) model of Ref. [2].

To clarify why interest rate derivatives have such an importance we note the following. Unlike the interest
rate itself, which is not tradeable on any established securities market, different bonds can be traded on a
recognized investment exchange, as bond owners may decide to sell them at any time before maturity. Thus, in
this setting the basic tradeable asset is the bond process pt;T ðrtÞ. Consider at time t a security, say an option,
written on the value at T of a (zero-coupon) bond maturing at t; toTot, with payoff function ~YðvT ;tÞ where
vT ;t is the T-price of the bond; using (4) we have that vT ;t ¼ pT ;tðrT Þ for some pT ;t : R! R and hence the
payoff also equals

~YðvT ;tÞ ¼ ~YðpT ;tðrT ÞÞ � YT ;tðrT Þ.

Thus, any security on a bond maturing at t with payoff ~Y can be viewed as a security on rT with associated
payoff YT ;tðrT Þ � ~YðpT ;tðrT ÞÞ where pt;tðxÞ solves (5) and pt;tðxÞ ¼ 1.

Classical examples relevant in Finance and associated payoffs are:
(i)
 The zero-coupon bond itself if sold by the owner prior to maturity: if the bond matures at t and is sold at
time Tpt then the payoff function is given by ~YðyÞ ¼ y and YðxÞ ¼ pT ;tðxÞ.
(ii)
 Call European option to buy a bond at T with strike k and maturity t4T . Here

~YðyÞ ¼ ðy� kÞþ; YðxÞ ¼ ðpT ;tðxÞ � kÞþ,

where we recall that the positive part of a function f is defined as

f þðxÞ ¼ f ðxÞ if f ðxÞX0; f þðxÞ ¼ 0 otherwise.
(iii)
 Put European option: ~YðyÞ ¼ ðk � yÞþ; YðxÞ ¼ ðk � pT ;tðxÞÞ
þ.
(iv)
 Caps. In terms of a certain constant L they are defined by

~YðyÞ ¼ L
1

y
� 1

� �þ
; YðxÞ ¼ L

1

pT ;tðxÞ
� 1

� �þ
.

(v)
 Options on coupon-paying bonds. Suppose the bond has n payments at times t1o � � �otn and maturity
TXtn; then it is well known thatYðxÞ is a linear combination of payoff functions corresponding to case (ii).
These examples underscore the interest of having closed formulas to value general interest rate securities, as
our results do; this is in contrast with the original CIR paper where only valuation of bonds is considered.

Unfortunately, there are very few choices of the functions a and b for which a solution of (5) can be
obtained in closed form. An exception is given by the classical Vasicek model [3], wherein rt is assumed to be
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an Ornstein–Uhlenbeck Gaussian process. A serious drawback of the model is that the interest rate can take
negative values with positive probability. (For option pricing of American options in the framework of
Vasicek model see Refs. [4–6].) To overcome this difficulty CIR consider an equilibrium economy in which
pt;T ðrtÞ solves (5) and rt evolves via Feller’s SDE (1), (2) where s; q;m and Y are constants [2]. The resulting
SDE (1) is named after R. Feller who first studied the transition density and nature of boundaries of a such
process [7] and proved that solutions are positive. (It is interesting to point out that this SDE has also been
recently used to model thermal reversal of magnetic fields in a magnetic grain [8].)

Due to overall simplicity and appealing properties the CIR model has become, to both academics and
practitioners, the prototype one-factor model to describe interest rate dynamics and bond prices. A closed
formula for bond prices was derived by CIR by solving (5) for Y ¼ 1 (see Eq. (45)). This formula is currently
used by major institutions like the Canada Department of Finance and the Danish National Bank to value
bond prices (see Refs. [9,10]). However, unlike to what happens for the Vasicek model, rt is no longer a
Gaussian process which entails important complications; in particular, the problem of valuing general
securities within this framework is, to our knowledge, unsolved.

A further difficulty, present in both the Vasicek and CIR models, is the impossibility to fit observed bond

prices of all maturities, say, with those predicted from theory (i.e., from Eq. (45)). Motivated by this, Hull and
White [11] advocate using a time-dependent version of the former models as an approach that allows fitting the

model to the observed term structure (i.e., to real market data) (see also Refs. [12,13]). Such an assumption is
reasonable from a physical perspective as one expects the local volatility s to change in time. Hull and White
give an explicit expression for the bond price within the generalized Vasicek model but, regretfully, they fail to
solve the relevant PDE (5) in the CIR case, not even for the simplest case of bond pricing. Actually, such a
solution has been so far elusive and it is common belief that the time-dependent CIR/Hull and White model is
not amenable to analytic treatment (see, for example, the discussion in Refs. [14,15]).

In this paper we show that, in spite of the above claims, analytic valuation of general European securities in

the time-dependent CIR model is possible whenever qðtÞ ¼ s2ðtÞ=4. We find a transformation that permits
solving the SDE (1) and, in addition, converts (5) into a heat equation in the field of a time-dependent
frequency harmonic oscillator. Alternatively, into a non-stationary Schrödinger equation in imaginary time.
(Note that this ‘‘Wick rotation’’ of time is understood whenever we speak of the Schrödinger operator.)
Concretely, assuming that both the coefficients m;s and the boundary condition Y are arbitrary functions, in
Section 2 we (i) solve explicitly the SDE (1) and (ii) give the solution to (5) in terms of the Green’s function for

the time-dependent Schrödinger operator of a harmonic oscillator with time-dependent frequency. We next
express this propagator in terms of the solution of the classical harmonic oscillator. Thus our results express
the solution to (5) in terms of the solution of a linear ordinary differential equation (ODE) (see Eq. (25)).

Explicit constructions corresponding to concrete time dependency are considered in Section 3. In particular,
with constant coefficients, we present the solution to the problem of valuation of general securities under the CIR

model in an explicit way (Eq. (43)).
For complete accounts of option pricing and stochastic calculus from the physicist and, respectively, economist,

points of view see Refs. [16–20] and [1,12,21–24]. Complete information on historical series of USA treasury
bonds and of yield charts is available on-line, see Refs. [25,26]. There exist countless commercial software tools of
interest to investors based upon the CIR and Hull and White models; see, for example, Ref. [27].

We note that in the context of real markets new features may appear like the existence of self-scaling and
long memory effects. To account for those effects several authors discuss the possibility that the dynamics of
interest rates and of risky assets involve Levy process or fractional BM and discuss option pricing in such a
framework (see Refs. [16,28–32]).

2. Claim’s valuation and the non-stationary Schrödinger/heat operator

2.1. Interest rate evolution

As we have already pointed out we aim to solve both the SDE (1) and the PDE (5) when the coefficients
satisfy (2) with qðtÞ ¼ s2ðtÞ=4. It turns out that there exists a coordinate transformation which allows solving
both equations. We first consider Eq. (1) assuming that s and m are arbitrary continuous functions, i.e., we
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determine the solution rt to the nonlinear Itô’s SDE

drt ¼ ðs2ðtÞ=4� 2mðtÞrtÞdtþ sðtÞ
ffiffiffiffi
rt

p
dW t. (6)

Let MðtÞ �
R t

mðzÞdz and let Zt be defined by the Itô’s integral

Zt �

Z t

sðzÞeMðzÞ dW z. (7)

We shall now prove that the solution to (6) is given by

rt ¼
e�2MðtÞ

4
ðZt þ cÞ2, (8)

where c is an arbitrary constant.
To this end we define ~rt � gðt;ZtÞ where

gðt; zÞ ¼
e�2MðtÞ

4
ðzþ cÞ2. (9)

Then, noting that dZt ¼ sðtÞeMðtÞ dW t it follows by application of Itô’s rule (note that gðt; zÞ is of class C1;1)
that ~rt solves

d~rt ¼ qt þ
1

2
s2ðtÞe2MðtÞqZZ

� �
gðt;ZÞdtþ sðtÞeMðtÞqZgðt;ZÞdW t

¼ �2mðtÞ~rþ
s2ðtÞ
4

� �
dtþ

sðtÞ
2

e�MðtÞðZt þ cÞdW t ¼ �2m~rþ
s2

4

� �
dtþ s

ffiffiffiffi
~rt

p
dW t

which proves that the solution to (6) is given by (8).

Remarks. 1. With an analysis similar to that of Ref. [33] it can be proved that the condition qðtÞ ¼ s2ðtÞ=4 is
necessary for (6) to have a solution with the representation rt ¼ gðt;

R t

t0
f ðsÞdW sÞ for some g : ½t0;1Þ � R! R

and f : ½t0;1Þ ! R.
2. Motivated partially by Remarks 3 and 4, in the sequel we define a coordinate transformation ðx; tÞ !
ðx�; t�Þ as follows:

t� ¼ j1ðtÞ �

Z t

ðeMsÞ2ðt0Þdt0; x� ¼ j2ðt;xÞ � 2
ffiffiffi
x
p

eMðtÞ. (10)

3. Note that gðt; zÞ ¼ j�12 ðt; zþ cÞ. Here and elsewhere a symbol j�12 ðt;x
�Þ is used to mean the inverse

function of j2 with respect to the spatial variable. Hence j�12 ðt;j2ðt; xÞÞ ¼ x.
4. Further insight in solution (8) can be gained by noting that, by the well known Levy’s characterization

theorem (see Ref. [1]) and since j1 is strictly increasing, Zt is also a BM ran in a different time, i.e., there exists
a BM Bt such that Zt ¼ Bj1ðtÞ. Hence rt ¼ j�12 ðt;Bj1ðtÞ þ cÞ.

5. In the constant-coefficients case Feller gives a solution in law of the SDE (6); this means that the
transition density of the solution rt is given but not an expression of rt in terms of W t as (8) does. Note that the
transition density of rt follows immediately from Remark 4.

2.2. Valuation of general interest rate securities

Suppose at a given time t we have rt ¼ x. Recall that the t-price vt;T ðrtÞ of a security that at maturity T pays
YðrT Þ solves (5); concretely

s2ðtÞx
2

q2

qx2
þ

s2ðtÞ
4
� 2mðtÞx

� �
q
qx
� xþ

q
qt

� �
vt;T ðxÞ ¼ 0; toT ; vT ;T ðxÞ ¼ YðxÞ. (11)

We next show how to solve this equation with general functions s2ðtÞ; mðtÞ; YðxÞ. Motivated by the method
of solution of (6) we find it convenient to transform to coordinates (10); this map induces a corresponding
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transformation of functions f ! f � via

f �ðt�;x�Þ ¼ f ðt;xÞ or f �ðj1ðtÞ;j2ðt;xÞÞ ¼ f ðt;xÞ. (12)

By differentiation and use of the chain rule it follows that derivatives of vt;T ðxÞ ¼ v�t�;T� ðx
�Þ are transformed as

qvt;T ðxÞ

qt
¼ s2ðtÞe2MðtÞ

qv�t� ;T� ðx
�Þ

qt�

and so forth. Then, an easy calculation shows that v�t�;T� ðx
�Þ solves the final value problem

1

2

q2

qx�2
þ

q
qt�
� V ðt�; x�Þ

� �
v�t� ;T� ðx

�Þ ¼ 0, (13.1)

with ‘‘final’’ condition

v�T� ;T� ðx
�Þ ¼ Yðj�12 ðT ; x

�ÞÞ. (13.2)

Here

V�ðt�;x�Þ �
o�2ðt�Þx�2

2
; o� ¼

e�2M�ffiffiffi
2
p

s�
. (14)

Thus we have reduced the solution of (11) into that of a heat equation in the field of a harmonic oscillator with
time-dependent frequency o�ðt�Þ.

Let G�ðT�;X �jt�;x�Þ be the Green’s function or propagator for the heat (alternatively, non-stationary
Schrödinger) operator in the potential field of a time-dependent harmonic oscillator (the reader may consult
Ref. [34] for the basic facts of Green’s function theory from a physicist point of view). The propagator solves
the equation, in initial coordinates, LG�ðT�;X �jt�; x�Þ ¼ 0 where

LG� �
1

2

q2

qx�2
þ

q
qt�
� V ðt�;x�Þ

� �
G�ðT�;X �jt�;x�Þ ¼ 0, (15.1)

G�ðT�;X �jT�;x�Þ ¼ dðX � � x�Þ (15.2)

and dðX � xÞ is the Dirac delta function. Then, classical PDE theory (see Ref. [34]) yields that the solution to
(11) is given by

v�T� ;t� ðx
�Þ ¼

Z
G�ðT�;X �jt�; x�ÞYðj�12 ðT ;X

�ÞÞdX � �

Z
G�ðT�;X �jt�;x�ÞY

e�2MðTÞX �2

4

� �
dX �. (16)

Recall that we use t; x as the actual time and coordinate while T ;X are the final (maturity) time and forward
coordinate. Hence T� ¼ j1ðTÞ; X � � j2ðT ;X Þ ¼ 2

ffiffiffiffi
X
p

eMðTÞ.
We next show how to solve (15) and construct such a propagator. Working with forward coordinates turns

out to be more convenient. In this regard it can be proven that G�ðT�;X �jt�;x�Þ solves, in addition to (15.1), the

adjoint equation, in the forward variables, LyG� ¼ 0, or

1

2

q2

qX �2
�

q
qT�
� V�ðT�;X �Þ

� �
G�ðT�;X �jt�;x�Þ ¼ 0. (17)

We skip the proof so as not to overload the article with mathematical details.
It is remarkable that this equation can be solved in closed form. To this end let l�1ðT

�Þ � l�1ðT
�jt�Þ be the

solution of the equation for a classical harmonic oscillator with variable frequency o�:

d2l�1
dT�2

� o�2ðT�Þl�1ðT
�Þ ¼ 0 (18.1)

satisfying, at T� ¼ t�, the initial conditions

l�1jT�¼t� ¼ 1; _l
�

1jT�¼t� ¼ 0. (18.2)

(Here, _l
�
� dl�=dT�. Notice also the odd sign of (18.1), i.e., the ‘‘Wick-rotation into imaginary time’’.)
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We next define nðT�;X �jt�; x�Þ via

G�ðT�;X �jt�; x�Þ ¼
ffiffiffiffiffi
l�1

q
exp �

_l
�

1

2l�1
X �2

 !
nðT�;X �jt�;x�Þ, (19)

whereupon we find that nðT�;X �jt�;x�Þ solves the Cauchy problem

qn
qT�
�

1

2

q2n
qX �2

þ
_l
�

1

l�1

qðX �nÞ
qX �

¼ 0 (20)

with the initial condition nðt�;X �jt�; x�Þ ¼ dðX � � x�Þ. Dots stand for time T� derivatives.
We note the remarkable fact that, upon use of transformation (19), Eq. (17) is converted into an equation

where the potential term is no longer present; hence the latter equation is amenable to be solved via Fourier
transformation. To this end we introduce the Fourier transform fðT�; sjt�; x�Þ as

fðT�; sjt�;x�Þ ¼
Z 1
�1

eisX �nðT�;X �jt�; x�ÞdX �, (21)

whereupon we find that fðT�; sÞ solves the first order quasilinear PDE

qf
qT�
þ

s2

2
f�

_l
�

1

l�1
s
qf
qs
¼ 0; fðt�; sjt�; x�Þ ¼ eix

�s. (22)

A solution can be found through the well known method of Characteristics as

fðT�; sjt�;x�Þ ¼ exp ix�sl�1ðT
�Þ �

s2

2
l�1ðT

�Þl�2ðT
�Þ

� �
,

where

l�2ðT
�Þ � l�1ðT

�Þ

Z T�

t�

dl

l�21 ðlÞ
. (23)

It is easy to prove that l�2ðT
�Þ satisfies Eq. (18.1) with initial conditions _l

�

2jT�¼t� ¼ 1; l�2jT�¼t� ¼ 0 and hence
that it is a second independent solution to that equation. Further one proves easily the useful relationship
�l�2 _l

�

1 þ l�1 _l
�

2 ¼ 1.
Upon inversion of the Fourier transform (21) and use of the latter relationship to simplify some terms, we

finally obtain that the propagator for the heat operator with a harmonic time-dependent oscillator potential
(14) is given by

G�ðT�;X �jt�; x�Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2pl�2

p exp �
_l
�

2

2l�2
X � �

x�

_l
�

2

 !2

�
_l
�

1

2_l
�

2

x�2

2
4

3
5. (24)

Using (16) we obtain that, if rt ¼ x, the t-price vt;T ðxÞ of a security that pays YðrT Þ at maturity is given by

vt;T ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2pl�2

p Z
Y

e�2MðTÞX �2

4

� �
exp �

_l
�

2

2l�2
X � �

x�

_l
�

2

 !2

�
_l
�

1

2_l
�

2

x�2

2
4

3
5dX �. (25)

The reader may wish to consult Ref. [35] for related application of some of these ideas. A general construction
of the propagator for the heat equation with an asymptotically constant potential in terms of eigenfunctions of
the stationary Schrödinger operator is given in Refs. [36,37].

2.3. Valuation of bonds

The above construction of the Feynman–Kac propagator involves, as a starting point, the evaluation of the
‘‘transformed’’ functions and coordinates t�;x�;o�; l�j which can be a long, and sometimes cumbersome,
process. In the case of bond valuation ðYðxÞ ¼ 1Þ there exists a direct, neat answer in terms of the physical
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coordinates t; x. Indeed, for j ¼ 1; 2 we define ljðTÞ � ljðT jtÞ as above:

ljðT jtÞ ¼ l�j ðT
�jt�Þ; j ¼ 1; 2. (26)

Bearing in mind that

qlðTÞ
qT
¼ s2ðTÞe2MðTÞ ql

�
ðT�Þ

qT�
(27)

we find, upon substitution in Eq. (18.1), that the functions ljðTÞ can be evaluated directly by solving the linear
ODE

d2l
dT2
� 2QðTÞ

dl
dT
¼

s2ðTÞ
2

lðTÞ (28.1)

with initial conditions

_l2jT¼t ¼ s2ðtÞe2MðtÞ; l1 � 1 ¼ _l1 ¼ l2jT¼t ¼ 0. (28.2)

Here

_l �
dl
dT

and QðTÞ � qT log sðTÞ þmðTÞ. (29)

Finally, if YðxÞ ¼ 1, integral (25) can be evaluated in an exact way by completing squares in the exponent as

pt;T ðxÞ ¼

Z
G�ðT�;X �jt�;x�ÞdX � ¼

1ffiffiffiffiffi
_l
�

2

q exp �
_l
�

1

2_l
�

2

x�2

" #
¼

sðTÞeMðTÞffiffiffiffiffiffiffiffiffiffiffiffi
_l2ðTÞ

q exp �2e2MðtÞ
_l1ðTÞ
_l2ðTÞ

x

" #
. (30)

Remarks. 1. As we have already pointed out, the problem of pricing bonds under the time-dependent CIR
model has been reduced in Ref. [11] to solving a system of nonlinear differential equations while the more
general problem of valuation of arbitrary securities remained unsolved. In contrast, (25) and (30) solve both

problems in an explicit way.
2. It is possible to prove that the functions lj ; j ¼ 1; 2 and their derivatives are positive and strictly

increasing; furthermore they satisfy the identities

_l1ðTÞ
_l2ðTÞ

¼

Z T

t

s2f 2
ðsÞ

_l
2

2

ds; l1 _l2 � _l1l2 ¼ s2ðtÞe2MðtÞ.

This implies that p satisfies 0ppt;T ðxÞp1. Besides, the bond price decreases with the maturity time T from 1 to
a limit value X0; further p is a convex, decreasing to 0, function of x.

3. We note that the market convention is to quote bond-prices in terms of the yield to maturity

Y t;T ðrtÞ � �ð1=ðT � tÞÞ log pt;T ðrtÞ. Here we have

Y t;T ðrtÞ ¼
2

T � t
e2MðtÞ

_l1ðTÞ
_l2ðTÞ

rt �
1

T � t
log

sðTÞeMðTÞffiffiffiffiffiffiffiffiffiffiffiffi
_l2ðTÞ

q
0
B@

1
CA. (31)

We recall that the yield curve T ! Y t;T ðrtÞ represents Y t;T ðrtÞ in terms of maturity T for given values of t and
rt ¼ x. A normal (inverted) curve is one in which longer maturity bonds have a higher (smaller) yield
compared to shorter-term bonds; thus such a yield curve slopes upwards (downwards).

3. Some reductions and concrete constructions

Here we shall consider some further reductions obtained by assuming that the functions mðtÞ; sðtÞ satisfy
certain restrictions. Under these reductions the solutions to (18) and all objects appearing in the construction
above can be constructed in a fully explicit way.
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3.1. Constant frequency

We consider first the case where the functions aðt; xÞ; bðt; xÞ of (2) can be written as bðt; xÞ ¼
sðtÞ

ffiffiffi
x
p

; aðt;xÞ ¼ s2ðtÞ=4þ ðqts=sÞx for some sðtÞ40. This corresponds to m and s being related by
mðtÞ ¼ qts=2s. Then, with an appropriate choice of integration constants we have that MðtÞ ¼

� 1
2
logð

ffiffiffi
2
p

sðtÞÞ; further, from (10) we find that

t� � j1ðtÞ ¼
1ffiffiffi
2
p

Z t

0

sðsÞds; x� ¼ j2ðt;xÞ ¼ 23=4
ffiffiffiffiffiffiffiffi

x

sðtÞ

r
. (32)

It is interesting to remark that, using (8) and ensuing remarks, the interest rate can be written in terms of a BM
Bt as rt ¼ R2

t =4 where Rt � e�MðtÞðBj1ðtÞ þ cÞ is normally distributed: Rt�Nðmt; vtÞ with mean and variance

mt ¼ ce�MðtÞ ¼ 21=4s1=2ðtÞc; vt ¼ e�2MðtÞj1ðtÞ ¼ sðtÞ
Z t

0

sðsÞds.

Thus, the interest rate has mean value

rt ¼ c2 þ

Z t

0

sðsÞdsffiffiffi
2
p ds

� �
sðtÞ

ffiffiffi
2
p

4
. (33)

Further, (32) implies that in this case the ‘‘frequency’’ o� of (9) is simply o� ¼ 1 and hence Eq. (18) is a
constant-coefficients linear ODE. We trivially obtain the solutions l�1;2 of (18.1), (18.2) as

l�1ðt
�Þ ¼ cosh ðT� � t�Þ; l�2ðt

�Þ ¼ sinh ðT� � t�Þ. (34)

The value of any security follows from (25), (32) and (34). In particular, we get from (30) the price of the bond
as

pt;T ðxÞ ¼ cosh

Z T

t

sðsÞdsffiffiffi
2
p

� ��1=2
exp �

ffiffiffi
2
p

x

sðtÞ
tanh

Z T

t

sðsÞdsffiffiffi
2
p

" #
. (35)

The behavior of pt;T for long maturity times depends on whether sðtÞ is or not integrable. In terms offfiffiffi
2
p

B �
R1

t
sðsÞds we have

lim
T!1

pt;T ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh B
p exp �

ffiffiffi
2
p

x

sðtÞ
tanh B

" #
¼

40 if Bo1;
0 if B ¼ 1:

�

Yields are easily evaluated. In particular, the yield to perpetuity limT!1Y t;T ðrtÞ is given by

lim
T!1

Y t;T ðrtÞ ¼ lim
T!1

sðTÞ

2
ffiffiffi
2
p . (36)

Thus, if the volatility satisfies 0olimT!1 sðTÞ � s1o1 so it does the long-term yield Y t;1.
Actually, condition 0os1 must hold for the yield curve to be normal. If s1 ¼ 0 the yield curve
must be inverted. A partial interpretation for this behavior follows from (33): if 0os1 the interest
rate drifts on the real positive axis and fails to converge for long times. If s1 ¼ 0 such that sðtÞ converges to
zero faster than Oðt�1=2Þ the interest rate converges to zero and hence long-term investments give smaller
yields.

In Fig. 1 we plot both pt;T and Y t;T in terms of maturity T for t ¼ 1 and x ¼ 1=ð2
ffiffiffi
2
p
Þ corresponding to the

case sðtÞ ¼ 3
ffiffiffi
2
p
þ

ffiffiffi
2
p

=ð1þ t2Þ. Notice how the bond price decreases to zero while the yield curve is normal
(slopes upwards towards the perpetuity yield: Y 1;1ð1=ð2

ffiffiffi
2
p
ÞÞ ¼ 3=2) in agreement with previous comments:

here condition 0os1 � 3
ffiffiffi
2
p

o1 holds and, in particular, s is not integrable.
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Fig. 1. Plot of pt;T ; Y t;T in terms of maturity T for t ¼ 1 and x ¼ 1=ð2
ffiffiffi
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Þ.
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3.2. Exponential frequency

Suppose now that there exists a function cðtÞ such that the functions mðtÞ; sðtÞ of (2), (6) admit the
following representation:

sðtÞ ¼
ffiffiffi
2
p

c2e�
R t

c2

; mðtÞ ¼ c2
� _c=c. (37)

Then with an appropriate choice of integration constants we have

MðtÞ ¼ � logð
ffiffiffi
2
p

cÞ þ
Z t

c2
ðsÞds; t� �

Z t

c2
ðsÞds; x� ¼

ffiffiffiffiffiffi
2x

c2

s
e

R t
c2

(38)

and hence from (14) we find that the frequency decreases exponentially: o�ðt�Þ ¼ e�t� . Even though Eq. (18)
has a time-dependent frequency, the solutions of Eq. (18) can be obtained in an explicit way. Skipping details
we have

l�1ðT
�jt�Þ ¼ e�t� K1ðe

�t� ÞI0ðe
�T� Þ þ I1ðe

�t� ÞK0ðe
�T� Þ

� �
,

l�2ðT
�jt�Þ ¼ I0ðe

�t� ÞK0ðe
�T� Þ � K0ðe

�t� ÞI0ðe
�T� Þ, ð39Þ

where InðzÞ; KnðzÞ; n ¼ 0; 1 are modified Bessel functions of first and second kind. The value of claims follows
from (25). In particular, (30) gives that the price of bonds is given by

pt;T ðxÞ ¼ eð1=2Þj1ðTÞðBðT jtÞÞ�1=2 exp �
ej1ðtÞ

c2
ðtÞ

AðT jtÞ

BðT jtÞ
x

� 	
, (40)

where

AðT jtÞ � K1ðe
�T� ÞI1ðe

�t� Þ � I1ðe
�T� ÞK1ðe

�t� Þ,

BðT jtÞ � I0ðe
�t� ÞK1ðe

�T� Þ þ K0ðe
�t� ÞI1ðe

�T� Þ. ð41Þ

Note that, as expected, p decreases with the maturity time from the initial value pt;t ¼ 1 to the limit value

pt;T ðxÞ !
T!1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0ðe�t� Þ

p exp �
ej1ðtÞ

c2
ðtÞ

I1ðe
�t� Þ

I0ðe�t� Þ
x

� 	
40

which is strictly positive, unlike what happens in the CIR model and former case (see (35)).
In Fig. 2 we plot both pt;T and Y t;T in terms of maturity T for t ¼ 0 and x ¼ 2

3
with the election cðtÞ ¼ 1.

Note that the total decrease in the price of the bond is only around 30% of its initial value. In this case, the
yield curve is always inverted and tends to zero, i.e., longer-term investments yield lower returns. To
explain such a bizarre situation on intuitive grounds we note that in this model the interest rate has the
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Fig. 2. Plot of pt;T ; Y t;T in terms of maturity T for t ¼ 0; x ¼ 2.
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representation rt ¼ R2
t where Rt is normally distributed as

Rt�N
ffiffiffi
2
p

ce�t; 2te�2t

 �

.

Thus Rt ! 0 as t!1 with probability one and so it does the interest rate. A vanishing interest rate
corresponds to bond prices tending to a constant close to one but to vanishing yields.
3.3. Valuation in the classical CIR model

Suppose next that the temporal evolution of the interest rate rt is defined by (6) with constant parameters s
and m. This is the classical CIR model where the payoff is arbitrary. In this case one can skip the task of
solving (18) by directly considering Eq. (28), which, unlike (18), is then a trivial constant-coefficients linear

ODE. Solutions satisfying the initial conditions (28.2) are given by

l1ðT jtÞ ¼
s2ðtÞe2MðtÞ

o� � oþ
ðo�eoþðT�tÞ � oþeo�ðT�tÞÞ,

l2ðT jtÞ ¼
s2ðtÞe2MðtÞ

o� � oþ
ðeo�ðT�tÞ � eoþðT�tÞÞ, ð42Þ

where o� ¼ m� Z=2 and Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ 2s2
p

.
Substituting this into (25) and changing variables via X � e�2MðTÞX �2=4 we obtain the t-price vt;T ðxÞ of a

security that pays YðrT Þ at maturity as

vt;T ðxÞ ¼

Z ffiffiffiffi
D
p

exp �Að
ffiffiffiffi
X
p
� C

ffiffiffi
x
p
Þ
2
� Bx

h i
YðX ÞdX , (43)

where x � eðT�tÞ and

A �
2

s2B
; B �

2ðxZ � 1Þ

ð2mþ ZÞðxZ � 1Þ þ 2Z
,

C �
2ZxZ=2

ð2mþ ZÞðxZ � 1Þ þ 2Z
; D �

Z
2p

xmþZ=2

xZ � 1
. ð44Þ

Formula (43) solves in an explicit way the problem of valuation of general securities under the CIR model, and
hence represents, to our knowledge, a novel important result.

In particular, if Y ¼ 1 we recover the result of Cox et al. [2] for the price of a bond:

pt;T ðxÞ ¼
ffiffiffiffi
C
p

xm=2e�Bx. (45)
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It follows that pt;T decays to 0 exponentially with the maturity time:

pt;T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z

Zþ 2m

s
e�ðZ�2mÞðT�tÞ=4 !

T!1
0. (46)

Using (45) an easy calculation shows that as T !1 the yield tends to a fixed quantity independent of the
starting value rt:

lim
T!1

Y t;T ðrtÞ ¼ Z=4�m=2 �
m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

s2

2m2

r
� 1

 !
. (47)

Note that the yield to perpetuity increases with s but decreases with the parameter m. This is what is to be
expected on intuitive grounds as s is proportional to the infinitesimal volatility while m is related to the mean
reversion level of the interest rate (see (6)). Depending in values of the relevant parameters the yield curve may
be normal, inverted or humped. In Fig. 3 we plot yield curves for x ¼ 0:33, x ¼ 0:4 and x ¼ 0:5 and parameter
values t ¼ 0; m ¼ 1 and s ¼ 2 that show this. Note how the direction of the slope is quite sensitive to the
original value x � rt. This behavior of the yield curve can be, again, partially explained in terms of the process
Rt such that rt ¼ R2

t =4. Here Rt is an Ornstein–Uhlenbeck process, having normal distribution with mean and
variance

mt ¼ ce�mt; vt ¼
s2

2m
ð1� e�2mtÞ; c � 2

ffiffi
r
p

0.

Thus, the mean value of the interest rate

rt ¼
1

4

s2

2m
þ 4r0 �

s2

2m

� �
e�2mt

� �

decreases or increases in time depending on whether or not the condition r04s2=8m holds.
Actually, this latter condition determines roughly whether the yield curve increases or decreases. This is to

be expected since if rt is increasing, say, towards a limit value s2=8m one may expect that the longer the
maturity the higher the yield and hence that yield curves also increase.

4. Conclusions

In this paper we have considered the problem of how to prize general European securities in the time-
dependent CIR model, i.e., whenever the instantaneous interest rate satisfies a time-dependent Feller SDE as
suggested originally in Ref. [11]. We show how to solve explicitly this SDE whenever a certain condition is
satisfied and give the temporal evolution of the interest rate. Motivated by the method of solution we find a
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coordinate transformation that converts the prizing PDE (5) in a heat equation with a time-dependent
harmonic oscillator potential. We next reduce the former to solving the linear ordinary differential equation of

the classical harmonic oscillator.
We also find several reductions under which this ODE is solvable in closed form. In these cases, explicit

formulae for prizing are given and the behavior of bonds is discussed. In particular we have given the solution
to the problem of valuation of general securities under the CIR model in an explicit way. For all these models
the yield chart is given and its behavior discussed.
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