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ALGORITHMIC CONSTRUCTION OF LUMPS
P. G. Estévez* and J. Prada*

We use the singular manifold method to generate lump solutions of a Schrédinger equation in 2+1 dimen-

sions and present three different types of such solutions.
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1. Introduction

Our main objective in this paper is to construct an algorithmic procedure based in the singular manifold
method (SMM) [1] and allowing rational solitons (lumps) to be found for equations in 241 dimensions.
Lumps have been actively studied in the last few years (see, e.g., [2]).

We consider the 241 system [3], [4]

my +uw = 0,
MU + Uge + 2umg = 0, (1)

— Wt + Wep + 2wm, = 0.

Our interest in this system is motivated by the following considerations. If m is real and w is the complex
conjugate of u, then (1) is the equation proposed by Fokas [4], which reduces to the nonlinear Schrodinger
equation for x = y. Real and complex versions of (1) were respectively discussed in [5] and [6]. The
Painlevé property was investigated in [7] and [8]. Line soliton solutions and dromions were obtained using
the SMM [3] and the Hirota method [7]. Miura transformations between (1) and the generalized dispersive
wave equation [9] were presented in [10]. Darboux transformations appeared in [3], where the SMM was
deeply studied.

This paper is organized as follows. In Sec. 2, we present the SMM for (1). In Sec. 3, we use the SMM as
a procedure to iterate fields, eigenfunctions, and singular manifolds such that new solutions arise iteratively
from trivial seed solutions. Darboux transformations and Lax pairs also appear naturally. In Sec. 4, we
generate lump solutions of (1) using this method.

2. Singular manifold method

We apply the SMM to (1) as was done in [10] but present a more convenient version of these results.
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2.1. Truncated expansion. The SMM implies that the fields can be expanded as a truncated
Painlevé series of the form

<1>_u0>+A0>¢z

P’
w® — w© 4 BO) Z?O , 2)
W _ 4 55
m =m (b(o) y

where {m(® 4 w1} is a seed solution and ¢©)(z,%,t) is the singular manifold corresponding to this
solution. The functions A©)(z,y,t) and B (z,y,t) are to be determined by substituting (2) in (1);
{m® M wM} is a new solution of (1) obtained via auto-Bicklund transformation (2). The indices (0)
and (1) correspond to the seed solution and the first iteration, the index (n) corresponds to n iterations of
the auto-Béacklund transformation (2), and ™ therefore denotes the singular manifold corresponding to
the solution {m(™), u(™) w (™},

For any (n), we define the quantities

) _ 957 m _ 95" my _ &4
vt = @a qa = @7 = @ (3)
and also the Schwarzian derivative )
(n)
s = ) _ % (4)

We then have the relations
r{m — gf" 4 gl — g =,

o = (g + ¢™@u™) | (5)

ol = (¢ + g™u™)

2.2. Seed solutions and singular manifold equations. Directly substituting (2) in (1) gives
three polynomials in ¢(?). Setting each coefficient of these polynomials to zero and using (3)—(5), we obtain
several equations. Using MAPLE to manipulate them, we obtain the singular manifold equations

¢ — A BO)

AQ 5O 40 O
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x A(0) "B A0 B0) (6)
(0) (0) (0) (0) 0))2
5O = _As _ Beo A 4 B (r®) + [ 9 da
A0 T BO A0 B(O) 2 t

and the expressions
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which can be linearized, yielding the Lax pair.
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2.3. Lax pair. Introducing two functions ¢(9) and ¢(© defined by

0 0 0 0
R T
MOREEOR DO o0

(see [3]) and proceeding as in [3], we obtain
w0 — Oy — (u<0))2w<°)¢(0) =0,
2
w® g0 — @0 _ (@2, 050 g,
i + 0 4+ 2mOy©® = o,
— il + 09 + 2m©p© — o,

It is trivial to verify that the compatibility condition for (7) is that {u(?),w(®) m(9} satisfies (1). In fact, (7)
is a two-component Lax pair for (1).
Computing A® and B and substituting them in (2), we obtain

1 (0),,(0)
WO 0 _ L 0y

ONONE

1 (0)¢(0)
(1) = @ =P Yy 8
e R OB (®)
(1) — 2
e POk

where ¥(©) and () are eigenfunctions of the seed solution {u(?), w(® m©} and ¢(©) can be determined in
terms of these eigenfunctions via the exact derivative

a9 = O do 4 -

O)w y e dy + (9 — D) dt. (9)

2.4. Darboux transformations. We continue the procedure developed in [3]. Let ¢1 , 1 ©) and
wgm, cpéo) be two different pairs of eigenfunctions for the seed Lax pair. Equality (9) allows constructing
two zeroth-order eigenfunctions qS:(LO) and (béo) via the expression

1
a9 = i + 5 (07), (), dy + [0l (457), = o7 (9”) ] dt (10)

(0) 4

Using wio) and ¢’ in (8), we obtain an iterated solution {u™, w® m™} that suggests an iteration of the

eigenfunctions of the form (see [3], [10], [11])

W _ g0 o oY W_ o @AD
Yy = - (b—’ P2 =Pa — ¥ ¢(6) (11)
1

such that ¥{" and " are eigenfunctions for the iterated solution {u™®, w® m} obtained by the Painlevé
expansion of the seed eigenfunctions 1/)%0) and npgo). Furthermore, the singular manifold itself can be iterated
*® (0) A ()

1) _ 40 _ h2tia
¢2 - Y2 (0)
1
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such that ¢§” is the singular manifold that arises from wél) and npgl) via expression (10) with the index (0)

replaced with (1) and j = 2. In addition, we obtain the expressions for Q(O) and AZ(OJ y i, =1,2,

o (), ("), dy+ [0 (i), =i (7)), ] dt,

" = Vo da + -
0) _ (0
A =0
) _
We note that ¢j = j i

3. Iteration

3.1. Second iteration. Because gbgl) is a singular manifold for the iterated solution {u™), w™ m®},
we can iterate again and obtain the second-order iterated solution

u<2>:u<0>_ﬁ[(¢<0>) (06 — 000 + (¢), (760 - v00%)] L

T1,2
. 1
w® = w® — ("), (108" — %) + (u8"), (870" — o )] —.
m@ — o 4 (12)s
T2

where

1) 0) (0) 4(0) oY) o)
T1,2 = O <l5 = ¢ <l5 — Q55051 =det <Q(6) ’ ) .
The matrix element QEOJ) can be also iterated, i.e.,

1
sz(',lj) = wj(‘l)‘pz('l) dx + M) (¢§1))y(90z(‘1)) dy +i[p; v W ) ¢(1)( )w} dt.

Using (11), we can easily verify that the truncated Painlevé expansion for the matrix element is

Q©0©
1) _ ~(0) 1,115
Q=0 -5

1

3.2. The (n+1)th iteration. The above procedure can be easily iterated n times. If w,(l and gp(n)

are two eigenfunctions of the nth iteration and ¢§I") is the corresponding singular manifold, then we can
summarize the results as

() (n) (n) /. (n)
W) g L @)y iy L en (1),

) 0 w™ m
h h
(n) (n)
) — ) 4 O )e P = g o 2y
) ¢<n>
h
ot OIND
(n+1) (n) (n)°"j,h (n+1) _ ,(n) 3,h""h,j
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O
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where Qg"j) is the matrix defined via the exact derivative,
() _ gy(m) ) 1 MY ([, (n) (n)
dQd, 5 =7 dx—i— (¢ ) (¢on )ydy‘H[ (¢ ) —; ( )1] dt,
and ¢{" = Q'
4. Lumps
In this section, we use the method to obtain lumps. Taking u(® =1, w(® =1, and m(® = —y as the

seed solution, we obtain

@), — " =0
(¥, — " =0,
i)+ (050 =0,
—i(ef), + (#), =0
The eigenvalues for (12) are
v = @Dy + B P(ky)], @ = e My £ 5P(ny)], = 1,2,

where kj;, nj, aj, B4, 0;, and ; are complex constants and P and @ are the polynomials

P(kj)—x—?—i-%kt Q(kj):x—i-%—i-ikjt.
J

Because we seek rational solutions (lumps), we need a polynomial expression for the singular manifolds,
and it is therefore clear that n; = k;. We present three different cases.

4.1. Lumps of type I. Settinga; =71 =1,61 =7 =0, a0 =7 =1, 02 =62 =0, k; = nq, and

ko = no = —k7 (the asterisk denotes complex conjugation), we obtain
¢§0) = elel7 gogo) = eile% wéO) = eikTQ;’ Spéo) = ek;Q;’
Q1—$+ 2+Zk1t Plzﬂi—%—FZiklt.
2 2

Therefore, we can compute the matrix Ql(-’oj):

1
¢\ = d\°) = du — 1+ 2k dt,

¢y = dOf) = da — dy + 2ik} dt,

1
(k7)?

Q%) = [da: + dy + i(ky — k}) dt}e‘kl@le_kmf,

kiky

0y = [ (k1 — k) dt} k1Q1 ki Qi

klkl
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Fig. 1. Lumps of type I.
It can be integrated as

0 0 0 0 *
W= =P, 03 =6 =P,

©0) _ L ke ki@ ©_ 1 ko ke;
=———¢ e , Qy1=——¢ e,
1,2 ki + ki 217k 4k

Hence, the function 7 2 is

1 2
T2 = PP+ (m) )
1

which can be written as the real positive-definite expression

1 2
T2 = X12 +Y12 + (g) ;
1

by setting P = X7 + ¢Y7, where k1 = a1 4+ ib; and

a2—b2 2@1()1
Xi=2— —5——F—y—2bt, Yi=-—5———y+2at.
U et T T e

Then the solution for the second iteration is

u(2) 1 L 1+ 2i(b1X1 + CllYl)
T1,2 CL% + b% ’
w(2) —1_ L 1— 2Z(b1X1 + a,lYl)
71,2 CL% + b% ’
m(2) = —y+ M
T1,2

An example of type-I lumps is shown in Fig. 1.
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Fig. 2. Lumps of type II.

4.2. Lumps of type II. Settingay =71 =1,81=01=0,a0 =7 =0,82 =0 =1, k1 =nq, and
ko = ng = —kj, we obtain

¢§0) — ek1Q1’ 4,050) - e—lelp17 1/)50) — ¢ k@1 Py, <p§0) = ekIQI,
1 CL2 - 3b2 Yl - 2a1t 3@2 - b2 Yl - 2a1t
Q0 _ Zix2_y2_ % 1 i\ x. v, — ¢ 1 1 ’
Lot Looad+n by L a? + b} 2aq

0y = ¢ = (o),

2
0_ 1 L 2, 1]t
2= 2a; [(Xl * 2a1) YO 402 | k@@L

o) = ZLelelek;Q;,
1= 50

1 232 Y, —2a1t
7'1,2=Z|:X2 24 111

2 2
3a? —b? Y7 — 2aqt
-Y - X1V —t RS
1 1 a%—f—b% bl :| +|: 141 + +

a? + b3 2aq

An example of type-II lumps is shown in Fig. 2.
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Fig. 3. Lumps of type III.

4.3. Lumps of type III. Settinga; =01 =0,61 =71 =1, a0 =02=0, G2 =7 =1, k; =nq, and
ko = ng = —kj, we obtain

1/)50) _ elelph <,O§O) — e—lelpl, ¢§O) — e—kaIpl*, (pgo) — FQT P1*7

aj — 6a2b? + b}
2&11)1(&% + b%)2
2(a? - b7)
(af +07)

X3
Qg(g = |:—1 — X1Y12 +

3 (Yl — 2a1t):| +

YB
+i[——1 + X7y —

] (V; — 2a1t)],

0 = ¢ = (o))",

= —2%1 [(Xl + 2%1)2 +Y2 4—%%’“@1@1@{@17
05 = 271” K - 2—;)2 +YP+ %ﬁ}ewlemi,
+ {—%13 +X12Y1—%(1’1—2a1t)r+4_:ﬁ{()(l+ylz)z+z_§+4%ﬁl .

An example of type-IIT lumps is shown in Fig. 3.

In a previous paper [3], we saw that the one-soliton solution corresponds to the first iteration of a seed
solution and the two-soliton solution aries from the second iteration such that each iteration provides a
different wave number. Nevertheless, as we see here, obtaining a one-lump solution requires two iterations
such that the second wave number is the complex conjugate of the first.
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