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Abstract

The singular manifold method is used to generate lump solutions of a
generalized integrable nonlinear Schrédinger equation in 2+ 1 dimensions. We
present several essentially different types of lump solutions. The connection
between this method and the Ablowitz—Villarroel scheme is also analysed.

PACS numbers: 02.30.1k, 02.30.Jr

1. Introduction

In this paper, we shall consider the following (2 + 1)-dimensional nonlinear system:
my+uw =0 W + ey +2um, =0 —lw; + Wy +20m, =0, (1.1)

where u(x, y, t), w(x, y, t) and m(x, y, t) are three fields.
There are several relevant considerations that motivate interest in this system.

e We note that w can be taken to be the complex conjugate of u. If, in addition, ¥ and m are
assumed to satisfy
lim wu(x,y)= lim m(x,y) =0, (1.2)
x2+y2—o00 y—>—00
we recover the fundamental equation proposed first by Shulman [1] and later
embedded by Fokas [2] into a more general, parameter-dependent, family of equations.
Further reduction to the manifold x = y yields the nonlinear Schrodinger equation.
Equation (1.1) is also discussed in [3-5].
e It possesses the Painlevé property (cf [6, 7]).
e Line soliton and dromion solutions were obtained in [4, 7] by use of the Hirota method
and the singular manifold method (SMM), respectively.
e Equation (1.1) can be mapped into the generalized dispersive wave equation by means of
a Miura transformation [8, 9].
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e Darboux transformations for this equation are considered in [4], using the singular
manifold method.

e The system is integrable since it arises as the compatibility of a Lax pair (see section 3).
The spectral theory of the relevant spatial operator (cf (3.13)) under certain nonvanishing
boundary conditions has been considered in [8] in connection with another interesting
wave equation (and hence with a modified temporal evolution). It has been shown that
under these boundary conditions only a continuous spectrum may arise. However, a
discrete spectrum also exists and is related to the appearance of lumps. A description of
this spectrum will be addressed in a future paper.

This paper is devoted to determining an interesting family of regular and rationally
decaying solutions—in short the lumps—to the above equation. Although the analysis of
[8] precludes the existence of rapidly decaying localized configurations under the boundary
conditions considered, we show that (1.1) supports the existence of weakly decaying potentials.
To this end, we construct an algorithmic procedure based on the singular manifold method of
[10]. No connection with the inverse scattering transformation will be attempted.

Lump configurations are paradigmatic solutions of integrable equations in 2+1 dimensions
and as such they have been extensively studied in recent years. They were first found with direct
methods in [11] in the context of the prototype integrable equation in 2+ 1 dimensions: the KPI
equation. The role that they play from the spectral point of view was highlighted in [12] (see
also [13]). In [14], it was shown that DSII also supports rationally decaying solutions. Since
then, lumps have appeared in many other integrable equations; see, for example, [15] for the
three-dimensional sine-Gordon, which contains an expansion of the eigenfunctions in terms
of poles that strongly suggests a connection with the Painlevé methods. An interesting feature
of these objects is the triviality of their dynamics: the motion is uniform and, upon scattering,
the multilump solution regains its properties and does not even undergo a displacement in
its position. However, for the KPI equation a new class of localized, real-valued solutions
with rational decay has recently been found that exhibit nontrivial asymptotic dynamics. In
this regard see [16, 17], in which a study of the connection with the discrete spectrum of
the relevant spectral problem is described. A subsequent study via direct methods appears in
[18]. These solutions exhibit interesting scattering properties that were first noticed in [19].
The extension of these ideas and solutions to DSII equation via spectral analysis of the Dirac
operator on the plane is considered in [20], while a complete study based on direct methods
is performed in [21], see also [22] for related ideas. For some interacting solutions in the
Yang-Mills equation framework, see [23].

We next briefly review the contents of this paper:

e Following [4] with the appropriate notation, in section 2 we recall the main results of the
singular manifold method for (1.1).

e Section 3 is devoted to using SMM as a procedure that allows us to iterate fields, the
eigenfunctions and the singular manifolds in such a way that we can iteratively obtain
new solutions arising from trivial seed solutions. Darboux transformations of the Lax
pair appear in a very natural way in this scheme.

e In section 4, the above method is used to generate several basic lump solutions of (1.1)
with different properties.

e Two-lump solutions are obtained explicitly in section 5, using the same iteration procedure.

e Expansion in poles of the eigenfunctions is considered in section 6. The connection
between the SMM method and the results of [17] is indicated but will be the object of
future research.
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2. The singular manifold method

The SMM method has proved to be an effective tool for clarifying several properties of the
nonlinear partial differential equations that have the Painlevé property; in particular, it has
been used to obtain Lax pairs [24], soliton and dromion solutions [24] and Miura [9, 25] and
Darboux transformations [26]. Remarkably, the SMM seems to be more successful in 2 + 1
dimensions than in the 1 + 1 case (cf [25]).

In this section, we shall apply the SMM to equation (1.1). A similar analysis has also been
carried out in [9], but here we shall present an improved and more convenient version of the
results. Nevertheless, for a more comprehensive explanation of how to proceed on applying
the SMM to (1.1), we address the reader to [9].

2.1. Truncated expansion

Let @ (x, y,t) = 0 be a singular manifold depending of the initial conditions. As is well
known [10], the SMM implies that the fields can be expanded as a truncated Painlevé series
of the form

¢(0)
ONOPOLS:
¢(0)
(V]
o) = ® 4 g0 Q2.1
¢(0)
(V]
m® = @ 4 &
¢(0)

where the notation means that {m @, u©, »(©} is a seed solution and ¢ @ (x, y, 1) is the singular
manifold corresponding to this solution. A© (x, y, ) and B© (x, y, t) are the functions to
be determined by substitution of (2.1) into (1.1). {m™", u™" v} is a new solution of (1.1)
obtained through the auto-Bécklund transformation (2.1). In what follows, the index (0) will
correspond to the seed solution and (1) to the first iteration. In general, the index (n) will
correspond to the nth iteration of the auto-Bicklund transformation (2.1) and, consequently,
¢ will denote the singular manifold corresponding to the {m™, u™, ™} solution.

2.2. Definitions

For every integer n, we find that it is useful to define the following quantities:

(n) (n) (n)
o™ — Py w _ P Lo _ P 2.2)

R ON O B ON
X X X

as well as the Schwarzian derivative s™:

(n)\2
v
§0 =y - O 2) , 2.3)
From the above definitions, the following relations arise immediately:
r® =g +r®q® —g"r® =0 @4)
U;n) _ (%E”) +q(n)v(n))x (2.5)

v = (™ + ’"(")“(n))x~ (2.6)
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2.3. Seed solutions and singular manifold equations

By direct substitution of (2.1) in (1.1), one obtains three different polynomials in ¢®. By
setting each coefficient of these polynomials to 0 and by using (2.2)—(2.6) we obtain several
equations that relate v@, g©@ @ A©® BO with {m®, u®, »©@}. They can be used to
determine the invariants s, ¢©@ r© in terms of A©, B®_ This is most conveniently done
using MAPLE software. The following results are obtained:

@ s©@, g O A0 BO gatisfy the following relations:

q©® =AOBO 2.7)
T T2 A0 BO  AO® RO ’

(0) (0) (0) (0) (0)y2
0 _ Axx Bxx Ay . B, ™) + / rt(O) dx. (2.9)

20 30 o tl'go T 5

Equations (2.4)—(2.9) constitute the singular manifold equations.
() {(m©@, u®, »®} can be written in terms of the singular manifold in the following way:

e A©

wo = 22 (ir(o) U m) (2.10)
BO BO

w0 =22 (_ir«» U W) @.11)

2.12)

0 0 © ©)
m® = L0 A + Biy vt B
x 2\ T 40 TBo T e T RO |-

As we shall prove in the next section, these expressions—(2.10)—(2.12)—for the seed
solutions can be linearized, giving rise to the Lax pair for the system (1.1).

3. The Lax pair

(a) Definition of the eigenfunctions

To linearize the above equations (see [4]), we introduce two functions ¥ and ¢© via

0 0
o) _ wi) (p)(c)

=Tt 0 (3.1
O O

ORI 2 S . (3.2)
w0 T 50

Substitution of (3.1) and (3.2) into (2.8) and (2.9) gives us

02 0) (©0)
a0 Z AV (AR e Je0) e (3.3)
2 \720 T 5o TR0 TN e0e T o T,o
2
g0 _ BY (LBY e v 0w e
© - .G
2 BO ) 0 v 0) (W 0))2 v 0) 1) 0)



On an algorithmic construction of lump solutions in a 2+1 integrable equation 7217

Substitution of (3.1)—(3.4) into (2.4) and (2.5) yields (after integration in x)

©) (0)
LY o8

0 _
A" ~ BO 1/,(0) ¢(0) 3-5)
(0) (0)
O S 5o
X A0 ¢(0) Iﬂ(o) ’ ’
Finally, substitution of (3.1) and (3.2) into (2.6) yields (after integration in x)
(0) (0) (0) 0)
: . P XX (pxx o
0 o T e T o0 T 3.7)
(b) Seed solution and eigenfunctions
Equations (2.10)—(2.12) for the fields now read
1y
O ___- "y
u" = B0 4O 3.8)
1 ¢
o _ __-
w"’ = A 5O 3.9
(0) (0) (0) (0)
am© — ¥ oV (3.10)
X w(o) q;(O) w(o) (p(O) ’ ’
(c) Spatial part of the Lax pair
Solving (3.8) and (3.9) for A and B, we have
1 ¢
o _ ___ TV
A" = 20 o0 (3.11)
2
O _ __- "y
B"Y = MO (3.12)
whose substitution into (3.5) and (3.6) provides
u(o)lﬂg) _ uj(co)l/f)(,o) _ (M(O))Zw(o)w(()) -0 (3.13)
09 — 0V — (@) 24P = 0. (3.14)
(d) Temporal part of the Lax pair
Adding and subtracting (3.7) and (3.10), we have
i+ 9 +2mPy @ =0 (3.15)
—ip® + 0 +2m©p© = 0. (3.16)

It is trivial to check that the compatibility condition between (3.13)—(3.16) is that
1@, 0@ m @y satisfy (1.1). Actually, (3.13)—(3.16) is a two-component Lax pair for (1.1).
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(e) Iteration
Let us recall that by the substitution of (3.11) and (3.12) into (2.1) we obtain

©) (0
wm_,o_ LV

“ 00 $O
©)44,0)
W0 L&V (3.17)
- 00 O '
©
D = @ 4 P
$©

where @ and ¢© are the eigenfunctions of the seed solution {u@, 0@, m©@}.

(f) Singular manifold and eigenfunctions

According to (2.2)~(2.4), (2.9), (3.1), (3.2), (3.11) and (3.12), ¢'© can be determined by the
eigenfunctions through the exact derivative

1 .
d¢(0) — 1/f(0)<p(°)dx + 5 W(O)Qﬁ(o)d)’ +i ((P(O)l/fio) _ 1//(0)‘/’)50)) dr. (3.18)

4. Darboux transformations

Darboux transformations also arise from our scheme. We follow the procedure developed in
[4]. Let 1//(0), (pfo) and 1//2(0), ¥, © be two different couples of the eigenfunctions for the seed
Lax pair such that

wO () M(O)(lﬁ@)) _ (u<0>)2w<o>¢§0> -0
J Xy y

0 0 0
0V (¢)"),, = (9] ))y—(w“’))z w09 =0 )
i(lﬂ@) + (w(o))x +2m(0)1ﬂ(-0) —
=i(e"), + (o)) + 2P0 =0, =12

Equation (3.18) allows us to construct two zero-order elgenfunctlons—¢>(0) (0)
through the expression
1
0) (0) 0) (0) © © (1, O (OFR Q)
de;” = v ) dx + G (¥77), (057) dy + il (v57), — vy (e7), ] dr,
ji=12 “4.2)
and by using 1//(0), (pfo) in (3.17) we have an iterated solution
0/ (O
0 o 1 I/f( )( ())
u’ =u" — 2
O ¢(0>
0) (./,(0)
1 e (V)
oV =¥ — "0l —(0) J 4.3)
u b)

()
M — O 4 (01 (0)) .
1

m
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Equation (4.3) suggests an iteration of the eigenfunctions of the form (see [4, 26])

©
U © 4.2
2 150
44
o (44
W _ 0 _ 0212
P =P ¢ o
1

such that wz(l) and (p(l) are the eigenfunctions for the iterated solution {u®, o, m™M} obtained

by the Painlevé expansion of the seed eigenfunctions lﬂz(o)

the Lax pair:

and (p(o) This means that they satisfy

u® (W(l))x, _ u}({l)( (U)y _ (u(n)zw(l)w(l) -0

Y
w(l)((pél))x) (1)((}0;1))}’ (60(1))2 (l) (1) =0

) (1) M, (1 _ “.5)
(1// ) (1// )xx+2m w =0
_1((/);1))[ (goél))xx_,_zm(l) (1) —0.
Furthermore, the singular manifold itself can be iterated as
Q(O)A(O)
1) (0) 1221,2
=0 g 4.6)
1

such that qﬁél) is the singular manifold that arises from wz(l) and (p(])

expression:

through the following

(v2"),(¢2")

dps" = yV eV dx + o Ydy +i[ps" (v3"), — vi (@3"), ] dr. 4.7

Substitution of (4.3) and (4.4) into (4.5) gives us the following expressions for SZ(O) nd

),
A

("), (v"),

T il (), ),

AP = Q) (4.8)

Jii?

1,1_1,2.

0 0 0
42" = "y P dx +

These results are consistent with the substitution of (4.6) into (4.7). It is interesting to
note that the matrix QEO? defined in (4.8) allows us to write (4.3) as

¢\ = Q. (4.9)

Summarizing, equations (4.3) and (4.4) can be considered a binary Darboux
transformation that transform Lax pair (4.1) into Lax pair (4.5).

5. Iteration

The Darboux transformations obtained in the previous section can be applied several times in
order to construct an iteration procedure that will allow us to obtain more and more complicated
solutions arising from a trivial seed. Equation (4.3) can therefore be considered as the first of
these iterations. Let us now iterate the procedure again.
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5.1. Second iteration

Let ¢§1) define a singular manifold for the iterated solution {#", 0", m"}. We can therefore
iterate again (4.3) to obtain

16

2 _ M y
u’=u"’— _
1 1
w® gD
(D (. (1)
1 ¢ ( 2 )
w?® — o1 _ >y 3.1
2D 0
2
(1)
( 2 )x

@ _ M
m< =m" + D
2

Combining this and (4.6)—(4.9) we obtain a second iterated solution

1 1
=~ L), 1760 w20 + (o), (0 — w20

1 1
0 =¥ ), (8 — o0 + (0, (0 — "] 62

@ — ;O 4 (t1.2)x

m 9
T1,2
where
Q(O) Q(O)
D 0 0) , (0 0) (0 1.1 1.2
2 =08"¢" = 9"} — Q%00 =det " M) (5.3)
Q7 2,

Similarly, the matrix element Qfoj) can be obtained by the iteration of (4.8) as

("), ")
@ _ (M, (D) Ly NTT Ty T, 0 (D )] (e))
in,j =@ 1//j dx + Wdy +1|:(pi (l[fj )x — ((p[ )ij ]df (54)
and by using (4.4) we have
¥
(1) (0) 0)""1,j
Iﬁj - ’#,- 1 0)
1
QO (5.5)
@O _ () 0) 2%i,1
i =% —¢ o
¢
It is easy to check that the truncated Painlevé expansion for the matrix elements is
QO
0 _ o0 L1
Q=9 - — (5.6)
1

5.2. (n + D)th iteration

Obviously, the above procedure can be easily iterated as many times as wished; we can

summarize the results for the nth iteration as follows: let w,g”) and (p}(l") be two eigenfunctions

of the nth iteration and let ¢,(,”) be the corresponding singular manifold. Then, the iteration
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scheme is given by
(n) ¢ (n)
1 @),
u D — 0 — (n_) 5.7
@ N
(n) (. ()
1o (W )
™D — ™ _ — o) > (5.8)
u b,
d)(”)
m D — ) (¢(n)) 5.9)
(n)
w(”"‘l) w(") (n) J (5 10)
h d)(n) ’
(n)
(n+1) (n) (n) (5 11)
('0] - g0] — @ ¢(n) .
h
(ﬁ)Q(’l),
¢;”+') = ¢;.") — o) (5.12)
b
Q(”)Q(")
(n+l) (n) i,h"%h,j
2" = ajy - (5.13)
h
where Q(”) is the matrix defined through the exact derivative
(@), 0,
(n) (n) (1) (n) (. (n) (n) (n)
A = ;" de + —m—=dy +i[g," (V") — (@) vy de (5.14)
and
(n) (n)
9" = Qf (5.15)
In the next section, we shall apply this method to obtain lumps.
6. Lumps

We can now determine certain elementary eigenfunctions 1//}0) , 90;0) by using a trivial seed

solution. Let us take the following as the seed solution:
u® =1, 0 =1, m® = —y.
In this case, (4.1) are
0 0 _
(wj )xy B I'bj =0
©) (0)
(guj )xy g0] 0
i(v)”), + ("), =0
0) 0)
—1((pj )t ((pj )xx =0.
Elementary solutions of (6.1) are

y @ = ki QO Y k) pNI (e 1y 1 k),

o0 = e QX ) Py 1y p ),

]_172’

6.1)

(6.2)
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where k; and n; are complex constants, and Q(k;) is

O, y.1.k;) :x+%+ikjt. (6.3)

J

PWl(x, y, t,k;) is a polynomial of degree N in x of the form

P[N](kj) =xV +a£N](y, t, kj)xN_l +oee +ot,[\z,v_]l(y, t,kj)x +a%v](y, t,kj), N >0,
6.4)

whose coefficients «¢[ V], are the functions of y and ¢ that are defined by the recursion relation

dafll  (h—N) |:a[NJ +k’aa,5N]}
- h J

dy sz. dy
9 [N]
% =i(h— N)[a!™ (h = N = 1) — 2k;0M] (6.5)
h=0,...,N—1, o =1.

The first four polynomials are, for instance,

PONx, y, 1, k) =1

. y
P (x, y,1, k;j) = x +2ik;t — 2
J 5 )
P2(x,y, 1. k) = x> +2 (Zikjt - ]%) X+ <2ikjt - %) +2if + k—f
J J J (66)

2
2
PB](x,y,t,kj):x3+3(2ikjt—%)x2+3 (2ik,r—%> +2it+k—§ x

J J J

3
2
+ (2iki,«t = 12) 3 <2ikjt = %) (21: + —f) — 6.
kj kj kj kj

If the potential is to be a rational solution, as happens with the lumps, one expects that
the singular manifold must reduce to a polynomial. From (4.2) and (6.3), it is clear that for
this to happen we need to select n; = k;. Furthermore, it is easy to check (see (6.3)—(6.5))
that Q*(x, y,t,k;) = Q(x,y,t, —k;f) and P™M(x, y, —t, k;f) = (PN(x, y,t, k;))*. This

suggests that we should select k, = —k}. Summarizing, in the following we have

ny =k, ny =ky = —kj,

¥ = PN (x, y 1, k), P\ = e MO pMx y 1, —ky), (6.7)
p = e MO PM e y ot k), @ = QPN y, 1 kD),

where O = Q(k;). We can classify the different solutions according to the different values
of N and M.

6.1. Lumps of type 0+0
These can be obtained by setting N = M = 0. In this case, (6.7) yields
PO =1, POk = 1. 6.8)
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These expressions for the eigenfunctions allow us to compute the matrix QZ(OJ) defined in (4.8):

1
dqbgo) _ ngﬂz = dx — P dy + 2ik; dz,
1

dgy” = dQf) = dx — Tl 2ik} dt,
. ! 6.9)
A" = |dx + —— dy +i(k, — k) dr [e 1@ e~k 2
’ klkf
1 o
doy)) = [dx +——dy +i(k; — k}) dz} 101 ehion,
’ klk1
which can be integrated as
Q¥ = ¢ = x — ky—2 +2ikyt = X, +iY),
1
Q) = ¢ =x — (kz‘})2 — ikt = X, — Yy,
. ! 1 (6.10)
O _ T o k0o k0] = T ki1 ok O
1.2 k1 +kik 2(11 ’
O _ 1 oo L oo
21 k1 +kik 2&1 ’
where we have
kl =al+ib1 (611)
Py + P} ai — bt
R L 6.12)
(af +b7)
P — P} 2aib
y, = B zal 122y+2a1t, (6.13)
2 (af +b7)

Therefore, the function 7, » can be written as the following real positive defined expression:

e xterie (L) (6.14)
5 1 1 2al N N

In this case, (5.2) provides the solution for the second iteration:

2 1 1+2i(b1X1+(11Y1)
u’=1—— s
T1,2 a%+b%
1 1 -2 X, +aY
w® =1 (21 12tl1 1)’ 6.15)
71,2 a1+b1
T1,2)x
m® — —y+( 1,2) 7
71,2

where 7, 5 is given in (6.14). Figure 1 represents the behaviour of m ?.

6.2. Lumps of type 0+1
These can be obtained by setting N = 0, M = 1. Accordingly, we have
1//1(0) — ek1Q1’ ¢ = e~k Q1 plll

Y0 = ek i (pliyx, o0 = otioi, (6.16)



7224 P G Estévez et al

Figure 1. Lump of type 0+0: m§,2) .

where

P = x + 2ikyt — kl% (6.17)

By integrating (4.8), and with the aid of (6.11)—(6.14), we have
(0) (0)
Q) =¢

_ 1 |:Xf vy ai —3b1 (Yy —2a1t):| +i|:X1Y1 s 3a} — b7 () —2a1t)]

2 a% +b% by a% +b% 2a,
)= g = (o) @19
1 1\2 1 1
Q(O)z—— Xi+— ) +Y2+ — ——— 6.19
. 2a, ' 24, ' 4a? | ehiQiehi 0] (©19
1 * *
Q(O) — — hQi kO] 6.20
2= 5 k@i g ( )

By substituting (6.18)—(6.20) into (5.3), we have the positive defined expression for 7; »:

1 232 (v, —2a0) 362 — b2 (Y, —2a16) "
rm:_[X%_ 12_“12 21(1 al)i|+|:X1Y1—l‘+ 021 21(1 al)i|
aj +b1 b1 aj +b1 2611

4
+ ! X, + LY +Y2+ ! (6.21)
422 [\ 24 ' a2 | '

Figure 2 shows the field m? corresponding to this lump solution.

6.3. Lumps of type 1+1
These can be obtained by setting N = M = 1. In this case, the seed eigenfunctions are
O — gk plll, Pl = e~k plll (6.22)
1//2(0) — ekl (plilyx, </>§0) = M Oi(plllyx, (6.23)
By integrating (4.9), we have

4 2.2, p4
QO _ 4O _ |:X_? X7+ (a} — 6aib; +b;)
3 2a1by (a? +b?)

Y, — 2611[):|

3 2 2—b2
+1i _n + X327, — —(al 12) (Y1 —2a11)
(af +b7)
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Figure 2. Lump of type 0+1: m§_2>,
Figure 3. Lump of type 1+1: mg,z).
0) _ (0 _ [, (0)\*
80 = 49 — (49) (6.24)

1 1)° 1 cor
ngé = —2— |:<X1 + 2—) + Y12 + 47:| e_k‘Q‘ C_k‘Ql
’ aj aj a

1

1 1)\* 1 o
Q;Oizz—|:(X1_2_> +Y12+471| ek‘Q‘ek'Q'.
’ ay ay aj

By substituting (6.24) into (5.3) and by using (6.12)—(6.14) we have the positive defined
expression for 7j 5:

2
X3 at — 6a’b® + b*
T2 = —l—X1Y12+(1 121 2;)(Y1—2611I)
3 2aiby(a? +b?)

2
Y3 2 (a? — b?
+ ——1+X%Y1—(1—12)(Y1—2a1t)
3 ap +

(6.25)

7. Two-lump solution

In a previous paper [4], we saw that the one-soliton solution corresponds to the first iteration
of a seed solution, while the two-soliton solution arises from the second iteration in such a
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way that each iteration provides a different wave number. Nevertheless, as we have seen
in section 6 obtaining a one-lump solution requires two iterations, such that the second one
provides a wave number that is the complex conjugate of the first one. This suggests that the
two-lump solution requires four iterations, such that the first and the third introduce two wave
numbers k; and k3, while the second and the fourth give us the complex conjugate k, = —kj
and ky = —k3.

To clarify the procedure, let us consider ¢§0)7 ¢§l), ¢§2), ¢f), where the superindex
indicates the order of the iteration and the subindex refers to the wave number related to
the eigenfunction. According to (5.12), we can write the following chain of iterations:

o0 = @ QEO%QQ
2 2 ¢§0)

Q(I)Q(l)
2 1 2,3%432
¢§ ) _ ; ) _ - (7.1)
2
2@
3) o $254853
o) =) — 2422
b3
and (5.13) gives us
QO oo
(1) (0) 171, ) (1) i,2°42,)
Q=9 — 0] Q=9 — D (7.2)
I )
From (5.10) and (5.11), we have
(0) (1
Iﬂ(l) _ 1}ﬁ(O) IR (OR8] 1,0(2) _ Iﬁ(]) ()2
o 1 ¢{0)’ o 2 51)
Q(O) Q(l) (7.3)
O _ O (051 @ _ (1) %42
(pj —@, (pl )’ ¢J _(pj (pz [N
oA 2
The same iteration can be applied to the fields. In particular, for m we have
(2) 3)
m® — @ 4 (¢3 )x m® —m® 4 (¢4 )x
- (2) - 3
?3 b4
which, combined with (4.6) and (5.1), can be written as
T
n® — 4 ( (1,2,3,4));(, (7.4)
T(1,2,3,4)
where
3) () (1), O
1230 = 6595795 0 (7.5)

Equation (7.2) can be used in (7.5) to give
2,2 2) 2 0) , (0 0) (0
s = (057957 — QL) (9761 - 1h)). (7.6)
Employing (7.1) and (7.2) in (7.6) again, we have

) () ) 5O
T(1,23.4) = (¢2 I Q1,292,1)

1,1 M M
X (¢4¢3 — Q3,95+

D oMo 2 o®Ma ol _ sOaM o) _ o) oD
92,393,494,2 + 92,494,393,2 - ¢3 92,494,2 - ¢4 92,393,2>

(1
2

(7.7)
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or
0® O Q® QO
) ,(0) 0) ~(0) o 1,4%94,1 0) 1,3%43,1
T(l,2,3.4) = (¢ ¢ 917292,1) <¢ (0) ¢3 - (0)

Q(O) Q(O) Q(O) Q(O)
) ,(0) 0) ~0) 0) 3,1°%1,4 0 4,1°91,3
_(¢2 ¢l - QI,ZQZ,I) <Q3,4 (0) Q (0)

©) (0 ©) (0 ©) 50
+¢0 Q(O) S2215213 SZ3 1914 _ 941912
! 2.3 (0> (0> <0)

(0) © <0> ©) (0> ©)

+¢0 Q(O) QZIQI4 SZ41£213 _ 931912
! 24 (0> (0> <0)

<0) ©) (0> © <0> ©)

40 O 93191? QZIQI4 Q(O) _ 941912
¢ 3 <0> <0> 42 (0>

(0> © (0> © <0) ©
0 o 24182, NC! €193 NG 93,191,2 -
—dr [\ — 5O 23 W 3,2 -—w | ¥
1 1 1 i

By direct calculation in (7.8) it is easy to check that the coefficients in negative powers of qbfo)
cancel and the rest of the terms can be collected as

o b el e
Q@ % 9
ol ol o af)

0 GO GO L0
Q4,l 824,2 94,3 ¢4

T(1,2,3,4) = det (7.9)

Expression (7.9) allows us to obtain the fourth iteration in terms of the solutions of the seed

Lax pair. For example, if we use for w}g())’ %(0) the eigenfunctions of lumps of type 0+0, which

means

w(o) — elel €0(0) — e—lel (©) — e_kTQT 90(0) kTQT
1 1 ) 2 2 ) (7.10)
) k ) —k ) —k3 Q% (O] ki 0% ’
v — ek Qs 0y =e 303 L =€ 303 @, = k05
the determinant (7.9) is, in this case,
P _e_lele_kTQT e k1Q1ek303 _e_leleingg
1 ki +ky k3—ky K+
ek1 Q1 ekT QT P* ekT QT ek303 ekT QT e7k§ Q;
ky+k 1 ky+k ki —k3
T(1,2.3,4) = det ) e 1 R (7.11)
e eh303ehiQr M9 k303 P e k037G
ki—ks ki +K3 3 k3 +k3
k101 K503 M5 05 K Of k3036503 px
K+ky & —k; k3+k] 3

It is easy to see that in the computation of the determinant the exponentials disappear and
(7.11) is a real purely rational expression that corresponds to the interaction of two lumps of
wave numbers k{, k3. Figure 4 shows the behaviour of m® in this case.

The procedure can be repeated 2m times by setting in each iteration k»; = —k3;_;.
Therefore, it is easy to generalize expression (7.9) to the case of m lumps in the following
form:

Tom = |2, ij=1,....2m, (7.12)
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Figure 4. Interaction of two lumps of type I: m§4).

where
T
m(zm) _ m(o) 4 ( (2m))x )
T@m)

8. On the meromorphic structure of the eigenfunctions of the second iteration

Here we shall explore the analytic structure of the eigenfunctions obtained upon two iterations.
Actually, the existence of lump solutions for KPI with nontrivial dynamics has been shown
to be related to the possibility of having meromorphic eigenfunctions with higher order poles

(see [16, 17]). To this end, in this section we shall obtain the iterated eigenfunctions 1//,52), ¢,Ez).

Let ¢fo), ¢§1) be the singular manifolds for the first and second iterations. According to (7.1),
we have

0) ) 1) oM
M _ 0 Q58 @ _ Q51825 8.1)
2 - 2 0 k - Yk 1 ’ .
¢, 5"
and (5.13) gives us
QOo©® oo
O _ O _ L) @ _ o Mi2dj
Qi’j = Qi’j ) Qi’j = Qi’j o (8.2)
1 p)
From (5.10) and (5.11), we have
(0) (1)
W _ O 0 §21 @ _ (D) $25
Kk — Yk 1 ¢(0) ’ kK — Yk 2 )
! 2 (8.3)
Q(O) Q(l)
n _  (0) (0) *%k,1 2 _ () (1) 27,2
O =@ — ¢ O O =@ — P OE
[oh 2
The combination of (8.2) and (8.3) gives us
1
2 _  (0) ©) ¢.,.(0) ,(0) 0) ~0) 0) ¢,,.(0) ,(0) 0) ~0)
=V = ——[QU by =y 0)) + Q0 (W b — ¥y Q1))
712 8.4)

1
2 _ (O ©) ¢ () () 0) O ©) ¢, (0) () 0) )
e = % _E[Qm(% ¢ — ¢, Q1,2)"'Qk,2(9"2 ¢ — ¢ 92,1)]’

which allows us to obtain the second iteration w}gz)’ (p,gz) of the eigenfunctions through the
seed eigenfunctions wi(o), goi(o). For simplicity, in the following we shall restrict ourselves to

computing 1//,52). Obviously, <p,§2) can be obtained in the same way.
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In section 2, we computed Q;O;,

have explicit forms for (8.4), we need to calculate Qfoj), i, j = 1,2, k in each case, taking into
account that according to (8.3) we have

¥0 = %oy + B Py (8.5)

i, j = 1,2 for the different types of lumps. In order to

Pi=x— % +2ikt, Or=x+ ky—2 +ikz. (8.6)

Therefore, for each type of lump we have two independent possibilities: oy = 1, x = 0 and
ar =0, B = 1. Let us see how to proceed in the case oy = 1, i = O:

O = ek, 8.7)

8.1. Lumps of type I: two simple poles

The results of section 6.1 give us

1/[1(0) — & (pl(O) — ek , 2(0) 4t (Pé()) — ekTQT’
V=P, e =P
o0 _ _e—k1Q1 ek} Q0 _ k101 ghi 07 8.8)
L2 ki +ki 2T kS ‘
1 2
1, = PP+ .
b2 <k1 +k;‘)
Calculation of €2 ; and €2, by means of (4.9) gives us
kQk a—ki Q1 kT Q7 ok Ok
ef“re ei¥re
Q= —m, Q= —. 8.9
1Lk Pays 2.k KTk (3.9)
For I/f,g) , substitution of (8.6)—(8.8) into (8.4) gives the expression
© ©) V1 Hi
= 14—+ , 8.10
k k ( k — ki k+k’f> (8.10)
where
A L L L S R T
T1,2 kl + kT 71,2 k] + kT
Expression (8.10) indicates that 1//,52) has two simple poles in k = ky and k = —k7.
8.2. Lumps of type II: a double and a simple pole
The results of section 6.2 give us
1/[1(0) — el 901(0) — e kO P, 1@0) — e KO Pl* @;0) — Mot
o _PL oy o _ (P)? y oo
L= — it 5 = - i
2 Tk 2 k)
.o [ PP P+ P 2
950; — _ohQigki0] Ll NI S (8.12)
: ki+ki (ki +kD)? (k+kD)3
© k101 ok 07
Q) = *
k] + kl

P} P;)? PP} P + P 2
r1,2=(—1—%—it><g— z3+it)+< 11*2+ ! L+ *4)
2K 2 k}) (ki +k5)2 (ki +k)3 (ki + kD)
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Calculation of QEOI)( and Q;OI){ by means of (4.9) yields
Q® _ el 1 QO _ et 0 eher (8.13)
= ehor \k—k,  (k—k)2 ) T kv ke
For 1//,52), (8.4) gives the expression

(2) (0) V2 Vi M1
= 1+ + + , 8.14
k k < k—k))?>  k—k k+kj‘> @19

where
1 " Py p
Vv, = — — , vy = —Pv
2 - 2 otk 1 1V2
(8.15)
1 « P, Pl* P+ Pl* 2
nr=——\ P’ + -+ ot el B
71,2 kl +k1 (k] +k1) (k] +k1)
Hence, w]fz) has a double pole in k = k; and a single pole in k = —kj.
8.3. Lumps of type II1: two double poles
The results of section 6.3 give us
1//1(0) =l P 901(0) — e M Py, %(0) — e MO Pl* (p;O) — ki@l Pl*
o _ Py o _ (P} y
=5t by =t
3k 3 (k7)
con [ PP P+ P 2
QEO% = —e hQieg kO ( ! 1* + 1 *12 + * 3> (8.16)
: ki +ki o (ki +k7) (ki +k7)
’ ki+ki (ki +kD)? (ki +k7)3
PPy [Py PP} 2 : P+ P\’
T2 = _+_4 + 4 + ~ T *\3 - #)2 '
3k 3 (k7) (ky + k) (ky + k7)) (ki +k7)
Calculation of 9(10,)( and Qéol)( by means of (4.9) affords
QO _ et? LA 1 QO _ KO oki0s pr 1
Lk ™ ok Q _ — R 2.k — * 2 |-
e k—ki  (k—kp) k+ki  (k+ky)
(8.17)
For w,fz), (8.4) gives the expression
@) ©) V2 vy 7% o
= 1+ + + + , 8.18
k k ( (k—k)? k—ki  (k+kb)> k+k;<) (8.18)
where we have
1 ¢P p* P1P1* P1+P1>k + 2 p
V= — — — , vy =—Pv
2T\ T T kT kD2 (kg + k)] ! e 5.19)
1 Pig+ P PP PP 2 _ _p '
e\ T e Tk k) T T

According to (8.18), w}gz) has two double poles in k = ki and k = —kj.

The above analysis based on the singular manifold method gives us ‘exact’ expressions
for the iterated eigenfunctions which display an analytic structure with higher order poles
and similar to that appearing in [17]. A general study of the analyticity properties of the
eigenfunctions belonging to the discrete spectrum will be addressed in future research.
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