
www.elsevier.com/locate/physa

Author’s Accepted Manuscript

Stochastic model for market stocks with strong
resistances

Javier Villarroel

PII: S0378-4371(07)00159-8
DOI: doi:10.1016/j.physa.2007.02.024
Reference: PHYSA 10458

To appear in: Physica A

Cite this article as: Javier Villarroel, Stochastic model for market stocks with strong resis-
tances, Physica A (2007), doi:10.1016/j.physa.2007.02.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/physa
http://dx.doi.org/10.1016/j.physa.2007.02.024


Acc
ep

te
d m

an
usc

rip
t 

Stochastic model for market stocks with strong resistances

Javier Villarroel
Univ. de Salamanca, Fac. de Ciencias,
Plaza Merced s/n, Salamanca 37008, Spain
(Javier@usal.es)

Keywords.
Option and derivative pricing, Econophysics, Stochastic differential equations.

PACS
0.7.05 Mh, 89.65.Gh, 02.50.Ey, 05.40.Jc,

Abstract.
We present a model to describe the stochastic evolution of stocks that show a strong resistance at
some level and generalize to this situation the evolution based upon geometric Brownian motion. If
volatility and drift are related in a certain way we show that our model can be integrated in an exact
way. The related problem of how to prize general securities that pay dividends at a continuous rate
and earn a terminal payoff at maturity T is solved via the martingale probability approach.

1 Introduction

We consider an ideal model of financial market consisting of two securities: a savings account Zt

evolving via dZt = rtZtdt, where rt is the instantaneous interest rate of the market and is assumed to
be deterministic (but not necessarily constant); and a ”risky” asset whose price at time t: Xt, evolves
according to some stochastic differential eq. (SDE) driven by Brownian motion (BM). As it is well
known, the prototype model for stocks-price evolution assumes that the return process Rt = log Xt

follows a random walk or BM with drift and hence that prices Xt evolve via the popular geometric
Brownian motion (GBM) model, i.e., that Xt satisfies

dXt = µXtdt + σXtdWt (1)

Here µ is the mean return rate and σ the volatility which are supposed to be constants while Wt is a
Brownian motion under the empirical or real world probability. We remark that here and elsewhere in
this article integrals and SDE’s are understood in the sense of Itô’s calculus. Transition to standard
(Stratonovitch) calculus can be done if wished.
The solution to this SDE is given by

XGBM
t = x0 exp

{
σWt +

(
µ− σ2

2

)
t
}

(2)

After the seminal work of Black and Scholes [1] and Merton [2], who derive a formula to price options
on stocks with underlying dynamics based upon GMB, eq. (1) has become the paradigmatic model
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to describe both price evolution and derivatives pricing. However, while such a simple model captures
well the basic features of prices it does not quite account for more stylized facts that empirical prices
show; among them we mention the appearance of ”heavy tails” for long values of the relevant density
probability distributions of returns [3,4]; further, the empirical distribution shows an exponential
form for moderate values of the returns, which is not quite fitted by the predicted log-normal density
implied by (2). The existence of self-scaling and long memory effects was first noticed in [5]. Due to all
this option pricing under this GBM framework can not fully account for the observed market option
prices and the classical Black-Scholes & Merton (BSM) formula is found to overprice (respectively
underprice) ”in (respectively, out of) the money options”. Apparently, for empirical prices of call
options to fit this formula an extra dependence in the strike price, the volatility smile, must be
introduced by hand.
After the seminal paper by Mantegna and Stanley who studied the empirical evolution of the stock
index S&P500 of the American Stock Exchange during a five year period, several authors have elabo-
rated on the possibility that price dynamics involves Levy process and have discussed option pricing
in such a framework (See [5-13]). For complete accounts of option pricing and stochastic calculus from
the economist and, respectively, physicist, points of view see [14-17] and [18-21].

Here we shall focus in another different aspect that some traded stocks seem to present, viz the
possibility of having, at some level, strong resistances both from above or below. For example,
corporations or major institutions may have laid out a policy under which heavy buy orders are
triggered whenever the stock price hits this level. Such feature can not be described with Eq. (1) as
under such an evolution prices can reach any value in (0,∞). Concretely, in this paper we want to
model the evolution of a market stock which has a strong lower resistance at some level c where we
suppose that c is a constant.

In section (2) we present a model that incorporates an attainable barrier at the point x = c > 0 and
hence can, in principle, be used to account for such a fact. We next derive the evolution of the asset
and the probability distribution function. It turns out that c is a regular barrier in terms of Feller’s
boundary theory and hence a prescription on how to proceed once reached must be given. In section
(3) we study pricing of securities under such a model and obtain a closed formula for valuation of
European derivatives that have, in addition, a continuous stream of payments. We tackle this problem
using the Martingale formalism of Harrison et al [22] and obtain the partial differential equation (PDE)
that the price of a security satisfies. Solving this eq. corresponding to particular final conditions we
obtain the price of options under this model. This price is compared with that given by the standard
Black& Scholes- Merton formula. In the appendix we consider some technical issues concerning value
of the market price of risk and the the existence of the martingale measure or risk free probability
under which securities are priced.

2 Price evolution under the martingale probability

Let rt be the deterministic interest rate at time t and Zt = exp
∫ t

0
rsds be a ”savings account ”. As we

pointed out we consider that Xt is the t-price of a tradeable asset that has a strong lower resistance
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at some constant level c where 0 < c < x0 ≡ X0. Mathematically this implies that the values of
Xt must be restricted to the interval [c,∞) and hence Xt must have a boundary point of a certain
kind at x = c. From intuitive financial arguments the boundary can not be of absorbing type since in
that case, once reached, the price Xt remains there. Further it seems reasonable to assume that there
exists positive probability to attain the boundary; we suppose that this event ”triggers” bid orders
and hence that Xt ricochets upon hitting the boundary. Therefore in such situation the assumption
that prices evolve via Eq. (1) is no longer valid. The obvious modification wherein prices evolve as

X̃GBM
t ≡ c + (x0 − c)eσWt+

�
µ−σ2

2

�
t (3)

is also ruled out as this evolution implies that c < Xt < ∞ but the value Xt = c is never attained
and the probability to get arbitrarily close to the barrier tends to zero with the distance to it. Thus
trajectories corresponding to a such model never quite seem to reach the support(In terms of Feller’s
theory briefly reminded below x = c is a natural barrier at which Feller functions blow up).

Motivated by similar ideas in the context of the Cox-Ingersoll-Ross model of interest rate dynamics
[23] we now introduce a more satisfactory model which satisfies the aforementioned features and is at
the same time analytically tractable; we shall suppose that Xt evolves via the SDE

dXt = a(t, Xt)dt + b(t,Xt)dWt, where a(t, x) = µx, b(t, x) = σ(t)
√

x2 − c2 (4)

Here X0 = x0 > c, µ is the stock mean rate of return and b(t, x) the volatility coefficient. Indeed,
under such a dynamics it follows from (4) that as x approaches the point c, b(t, x) tends to zero and
hence Xt evolves roughly like dXt = µXtdt implying that Xt will increase and then escape from the
boundary.
For valuation purposes one needs to consider the evolution under a new probability that might be
different to the empirical observed probability. Mathematically speaking a such a probability is defined
requiring that under it the discounted prices X ′

t ≡ Xt/Zt are martingales (this risk-neutral probability
was introduced in [22] although the underlying idea pervades the original work of Black-Scholes &
Merton [1,2]). Stated another way, this means that under the risk-neutral probability, the stock price
Xt evolves, on average, as the riskless security Zt thereby preventing arbitrage opportunities. Indeed,
the martingale property implies

e−
R t
0 rsdsE∗

(
Xt

∣∣∣X0

)
= E∗

(
X ′

t

∣∣∣X0

)
= E∗

(
X ′

t

∣∣∣X ′
0

)
= X ′

0 = x0 (5)

where E∗
(
Xt

∣∣∣X0

)
is the conditional average of Xt given X0 with respect to the martingale probability.

Hence
E∗

(
Xt

∣∣∣X0

)
= x0Zt (6)

More generally, given the past history Fs of the process up to time s (i.e., the σ-field of past events)
one has

E∗
(
Xt

∣∣∣Fs

)
= ZtE∗

(
X ′

t

∣∣∣Fs

)
= ZtX

′
s ≡ Xse

R t
s

rldl (7)

We shall assume that our market is efficient, i.e., that the martingale probability P∗ exists– which is
not always the case. In such a case the explicit form of the original drift coefficient is only needed
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to go back to the empirical or real world probabilities. Indeed, it follows from these arguments that
consideration of this probability amounts to redefining the evolution equation without changing the
volatility coefficient b(t, x) but replacing the drift coefficient to a∗(t, x) = rtx, independent of the
initial coefficient a(t, x) ≡ µx.
Unfortunately, in general it is not possible to solve the redefined SDE corresponding to the diffusion
coefficients (4) with a∗(t, x) = rtx. However, it turns out that in the particular case when σ2(t) = 2r(t),
i.e., for eq. (8) below, then both this SDE and the prizing problem can be solved as we next show. We
shall consider this case and hence we suppose that under the risk neutral probability P∗, Xt evolves
via the SDE

dXt = rtXtdt +
√

2rt

(
X2

t − c2
)
dW ∗

t , X0 = x0 > c (8)

Here W ∗
t is a BM with respect to the risk neutral probability. Technically, the existence and nature

of all objects introduced below is a difficult point. In the appendix we sketch how to perform such a
construction.
In the sequel all quantities are referred to the probability P∗ and hence Xt evolves via (8) which is
our fundamental equation. Further for ease of notation we drop here and elsewhere the use of ∗.
The return process Rt ≡ log Xt/x0 is found via Itô’s rule to satisfy

dRt = rtc
2e−2Rtdt +

√
2rt

(
1− c2e−2Rt

)
dWt, R0 = 0 (9)

Thus only when Rt is close to 0 it does behave like a classical random walk.
Useful information about the behavior of the price process at x = c follows by careful inspection of
the nature of the boundary x = c. Consider the Feller functions Σ(c, x), Ω(c, x) defined by

Σ(c, x) =
∫ x

c

p(z)
b2(z)

dz

∫ z

c

dy

p(y)
; Ω(c, x) =

∫ x

c

dy

p(y)

∫ y

c

p(z)
b2(z)

dz. (10)

where p(x) ≡ √
x2 − c2. The reader is referred for these matters to [24]. Notice that the integrand is

singular since it has a square root singularity at x = c. Upon evaluation of the integrals we find that

Σ(c, x) = Ω(c, x) =
1
4r

log2
(x +

√
x2 − c2

c

)
(11)

Thus, unlike what happens in the model defined by (3), we have that Σ(c, x) = Ω(c, x) < ∞ are finite,
corresponding to a regular boundary which can be both reached and exited from in finite time with
positive probability.
While Feller analysis shows that the boundary is attainable it does not clarify if the process can
be continued past the boundary (and hence whether prices below the level x = c can be attained).
Further it it is unclear what is the probability to reach the boundary or how the to continue the
process upon hitting the boundary.
These kind of problems regarding behavior of the process at and past the boundary are generically
quite difficult to tackle. It turns out that for our particular model the behavior of the process is
completely determined. Actually we have found that the solution to eq. (8) is given in a fully explicit
way by
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Xt = c cosh
( ∫ t

0

√
2rsdWs + κ

)
(12)

where κ ≡ cosh−1(x0/c). A typical path t → Xt is shown below in Fig. 1. To prove (12) let X̃t ≡ g(Yt)
where

g(z) = c cosh
(
z), Yt ≡ κ +

∫ t

0

√
2rsdWs (13)

Using Itô’s rule and the fact that dYt =
√

2rtdWt we find that X̃t has diffusion coefficients ã(t, x), b̃(t, x)
satisfying at x = g(z)

ã(t, x) =
2rt

2
∂zzg = rtg(z) ≡ rtx

b̃(t, x) =
√

2rt∂zg =
√

2rtc sinh
(
z) =

√
2rt

(
x2 − c2

)
(14)

i.e. X̃t ≡ g(Yt) solves the SDE (8).
Notice that the last equality and the fact that the sinh takes both signs, imply that the following
prescription must be given at the barrier:

b
(
g(z)

)
= −b

(
g(−z)

)
(15)

Thus (12) solves (8) provided the square root is defined with a branch cut on (c,∞).
We note that the conditional density f(s, Y |t, y), t < s of Yt solves

(
∂t + r(t)∂yy

)
f = 0; f(s, y|s, y0) = δ(y − y0) (16)

which is converted into the classical BM or heat equation upon time transformation via t′ = ϕ(t)
where we define

ϕ(q, r) ≡ 2
∫ r

q

rsds; ϕ(t) ≡ ϕ(0, t) ≡ 2
∫ t

0

rsds (17)

It follows that the process Yt has the distribution of a BM evaluated at time t′ and hence we can
represent Xt as

Xt = c cosh Yt where Yt = κ + Bϕ(t) (18)

and Bt is a new BM. It follows from (12) that Xt ≥ c and that Xt attains the barrier c whenever the
process Yt reaches 0 , i.e., when

∫ t

0

√
2rsdWs + κ = 0, which, according to (18) happens eventually

with probability one. As pointed out, it follows from (18) that in that case the process Xt is reflected
and hence the level x = c > 0 acts as a resistance of the stock value.
Let us now obtain p(T,X|t, x), the probability density function (pdf) of the price process conditional
on the value at time t: Xt = x, t < T . This pdf satisfies the backwards Kolmogorov-Fokker-Planck
equation (

∂t + r(t)(x2 − c2)∂xx + rx∂x

)
p = 0; p(T,X|T, x) = δ(x−X) (19)

Motivated by (13,17) above we define new coordinates t′ = ϕ(t), y = log
(
x +

√
x2 − c2

)
− log c. In

terms of the new coordinates p solves
(
∂t +

1
2
∂yy

)
p = 0; p(T, Y |T, y) = δ(c cosh y − c cosh Y ) (20)
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Using the well known formula

cδ(c cosh y − c cosh Y ) =
(
δ(y − Y ) + δ(y + Y )

)
/| sinh Y |

we find that

p(T, X|t, x) =
1√

2rt

(
X2 − c2

)
∑
±

exp
(
− 1

2ϕ(t, T )
log2 x +

√
x2 − c2

X ±√X2 − c2

)
(21)

We next compare the evolution of prices under this model and that described by GBM. For a mean-
ingful comparison we need to have rt = r constant and, in Eq. (1), µ ≡ r, σ =

√
2r. In this case (2)

yields
XGBM

t = x0e
√

2rWt (22)

Note that whenever Wt >> 1 both process behave in a very similar way:

lim
Wt→∞

Xt/XGBM
t =

x0 +
√

x2
0 − c2

2x0

However as Wt → −∞ then

Xt ≈
(
x0 −

√
x2

0 − c2
)
/2e

√
2r|Wt| →∞, XGBM

t = x0e
√

2rWt → 0

Finally, we note that in the limit c → 0 we can recover (2) from (18). A careful calculation shows that

lim
c→0

Xt = x0 exp B2rt

and hence, using that
√

2rWt is a BM at time 2rt, we recover (2).

3 valuation of securities

We consider here the valuation of securities earning a terminal payoff Θ1(XT ) at maturity T . We also
allow for the security to pay dividends at a continuous rate Θ2(s,Xs), t ≤ s ≤ T where we suppose
that both Θ1 : R → R and Θ2 : R+ × R → R are continuous. The standard case of stock option
valuation corresponds to taking Θ1(x) = (x− k)+,Θ2(x) = 0 where k is the strike.
Let vt be the (actual) t-price of such European derivative maturing at T , which must also depend on
T and the actual price x = Xt of the stock.
We assume the existence of risk-neutral probability P∗ under which relative prices of stocks and more
generally, of self-financing strategies v′t ≡ vt/Zt are martingales with respect to the history of the
process up to time t: Ft (notice that we shall drop again the symbol∗). If this is the case, reasoning
similarly as in (7) and use of the martingale property yields that

vte
R T

t
rldl ≡ ZT v′t = ZTE

(
v′T

∣∣∣Ft

)
= E

(
vT

∣∣∣Ft

)

To continue further we note that vt must satisfy at t = T that

vT = Θ1(XT ) +
∫ T

t

Θ2(s,Xs)ZT /Zsds ≡ v1
T + v2

T (25)
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as the RHS is precisely the earning at maturity. Note further that v1
T ≡ Θ1(XT ) is obviously Markovian

and hence that E
(
vT

∣∣∣Ft

)
= E

(
vT

∣∣∣Xt

)
.

It can be proven that v2
T ≡

∫ T

t
Θ2(s,Xs)ZT /Zsds is also a Markov process and hence that it satisfies

E(
∫ T

t

Θ2(s, Xs)ZT /Zsds
∣∣∣Ft) = E(

∫ T

t

Θ2(s, Xs)ZT /Zsds
∣∣∣Xt) (26)

Hence we finally obtain the price of the security as

vt = E
(
e−
R T

t
rsdsΘ1(XT ) +

∫ T

t

Θ2(s,Xs)Zt/Zsds
∣∣∣Xt

)
(27)

This can be simplified further by reasoning as follows. Let Xt,x
s , t < s be the price process at time s

knowing that it starts at x at time t, i.e., Xt,x
s ≡ Xs is the solution to (8):

dXs = rsXsds +
√

2rs

(
X2

s − c2
)1/2

dWs, with initial condition Xt = x. If we use the well known
property ([24])

E
(
XT

∣∣∣Xt = x
)

= E
(
Xt,x

T

)
(28)

then eqs. (13,27) are rewritten in the convenient form

Xt,x
T ≡ c cosh

(
Bϕ(t,T ) + ν

)
, ν ≡ cosh−1(x/c),

E
(
Θ1(XT )

∣∣∣Xt = x
)

= E
(
Θ1

(
Xt,x

T

))
=

∫
dY

Θ1

(
c cosh(Y + ν)

)
√

2πϕ(t, T )
e−

Y 2
2ϕ(t,T ) (29)

and so forth (actually, X
t,X

t0,x0
t

T = Xt0,x0
T when r is constant).

Alternatively, with (21) at our disposal we also obtain that the price of a security paying dividends
at a continuous rate Θ2(s, rs) and a terminal value Θ1(rT ) at maturity is given in an explicit way by

vt = e−
R T

t
rldl

∫
dXΘ1(X)p(T, X|t, x) +

∫ T

t

ds

∫
dXΘ2(s,X)p(s,X|t, x)e−

R s
t

rldl (30)

Note that by using the Feynman-Kac theorem vt may be also evaluated by solving the backwards
equation (

∂t + r(t)(x2 − c2)∂xx + rx∂x − r
)
v = −Θ2(t, x)

with the terminal condition lim
t→T

vt = Θ1(x).

As a natural application we evaluate the price of the plain vanilla call with strike k corresponding to
Θ1(x) = (x− k)+,Θ2(x) = 0. Let us introduce

x̂ ≡ (x +
√

x2 − c2)/2, k̂ ≡ (k +
√

k2 − c2)/2

N =
1√

ϕ(t, T )
log

x̂

k̂
, N± ≡ N ±

√
ϕ(t, T ),

M = − 1√
ϕ(t, T )

log
x̂k̂

c2
, M± ≡ M ±

√
ϕ(t, T ) (31)
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Then, in terms of Φ, the distribution function of the normal variable N (0, 1), we find from (27) to
(30), that, if Xt = x ≥ c, the plain vanilla call price is given by

vt = x̂
(
Φ(N+) + Φ(M−)

)
+ (x− x̂)

(
Φ(N−) + Φ(M+)

)
− ke−

R T
t

r(s)ds
(
Φ(N) + Φ(M)

)
(32)

The situation when c = 0 and r is constant amounts to having no barrier and hence (32) must reduce
to the BSM formula. Indeed, in this case one has x̂ = x, ϕ(t, T ) = 2r(T − t),

N ≡ N0 =
1√

2r(T − t)
log

x

k
, N0

± ≡ N0 ±
√

2r(T − t),M = −∞ (33)

and hence Φ(M) = Φ(M±) = 0, most of the terms in (32) drop out and we recover the BSM formula

vt = xΦ(N0
+)− ke−r(T−t)Φ(N0) (34)

Another interesting simplification appears when the strike k coincides with c: k = c. Using that for
this case is k̂ = c,M = −N, M± = −N∓ and the well known property Φ(z) + Φ(−z) = 1 we find that
all parenthesis in (32) add to 1 and the price of the option is the deterministic price:
vt = x− ce−

R T
t

r(s)ds.
The result is easy to understand; indeed, as we pointed out (12) implies that Xt ≥ c which rules the
possibility to have k < c, i.e., this case corresponds to having taken k at its lowest possible value.
Thus all uncertainty disappears since with probability one XT > k and the option will be exercised
will probability one.

In figure (1) we plot a typical path of the price process (8) starting at x0 = 5. We assume a yearly
interest rate r = 4.5% yr−1, annual volatility σ = 30% and suppose that the support is placed at
c = 4. Notice how eventually prices get near and eventually hit the support level c = 4 lingering
around for some time.

8
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Figure 1: A possible evolution of the price process. We plot Xt as a function of time during a time
span of five years (t = 5). The parameters have been chosen as: r = 4.5% yr−1, σ = 30%.

In figure (2) we plot the call price v in terms of the initial stock price x corresponding to a constant
annual interest rate r = 4.5% yr −1 with annual volatility σ = 30% and time to maturity T − t = 1
year. The barrier is located at c = 4 while the strike k = 8. The thick solid line represents (32) while
the dotted line is the classical BSM call price; the deterministic price d ≡ (x − ke−

R T
t

r(s)ds)+ is the
thin straight line. In all cases one finds that the prices implied by the classical BSM valuation formula
and (32) are quite similar, specially for long x. Notice how the BSM formula always overprices the
call option compared with the formula (32). However, it seems that the variation is only significant
in the region c ≤ x ≤ 2c, irrespective of how large c is.
Actually, we find in all cases that the deviation of (32) from (34) is quite small (see figs. 2 and 3).
This is easy to understand qualitatively when x is long, since then x̂ = x− c2

4x + O(1/x3/2) and hence
we find the expansion

√
ϕ(t, T )N = log(

x

k
) + log ζ − c2k̂

4x
+ O(1/x3/2),

where 0 ≤ ζ ≡ log k/k̂ ≤ log 2. Further M ≈ (1/ log x)e− log2 x and

vt ≈ x− ke−
R T

t
r(s)ds + O(1/x)

as in the BSM formula. However, such a rough argument does not account for the close similarity
even for small and moderate values of x.
The dependence of the option price upon the time to maturity up to 40 years is shown in figure 3.
The plot corresponds to an ATM option for which moneyness x/k = 1. The rest of parameters have
not been changed.
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Call price  against  actual price

0
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1

1.5
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2.5

3

4 5 6 7 8 9 10
x

Figure 2: plot of the call price v in terms of x corresponding to an annual interest rate r = 4.5%,
annual volatility σ = 30% and T − t = 1year with a barrier at c = 4. Strike is taken as k = 8. The
thick line represents (32) while the dotted line is the BSM call price. Deterministic price is the thin
line

Call price versus maturity

0

1

2

3

4

5

6

7

10 20 30 40
z

Figure 3: plot of an ATM call option price v in terms of time to maturity z = T − t. The thick solid
lines represents (32) while the dotted line is the BSM call price. Deterministic price is the thin line.
Parameters are as in the previous caption.

4 Appendix

Consider again eq. (4) dXt = µXtdt + b(t,Xt)dWt where Wt is a BM with respect to the real world

probability and b(t, x) =
√

2rt

(
X2

t − c2
)
. Let
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u(t, x) ≡
(
r(t)− µ

)
x/b(t, x), Mt = exp

(
−

∫ t

0

u(s,Xs)dWs − 1
2

∫ t

0

u2(s,Xs)ds
)

Here u(t, x) is the so called market price of risk . Then if Xt solves the above equation Mt can
be proven formally to be a martingale. Note however that a rigorous proof of the latter fact runs
into technical difficulties due to the singularity of u at x = c which might prevent, in principle, for
Mt to be a Martingale. We skip a rigorous analysis as we expect this to be the case. Defining the
risk neutral probability P∗ by dP∗ = MT dP it follows from Girsanov’s theorem (see [17,20]) that
W ∗

t ≡ Wt +
∫ t

0
u(s,Xs)ds is a BM under P∗. In this case an easy calculation shows that Xt also

satisfies Eq. (8) driven by W ∗
t , a BM with respect to P∗.
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