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Abstract

In this paper we apply truncated Painlevé expansions to theLax pair of a PDE to derive gauge-
Bäcklund transformations of this equation. It allows us toconstruct an algorithmic method to
derive solutions by starting from the simplest one. Actually, we use this method to obtain an
infinite set of lump solutions that can be classified by means of two integer numbersN and
M. Two different PDE’s are used to check the method and comparethe results.

1 Introduction

Real valued solutions with rationally decay or lumps have been extensively studied in recent years.
For the KPI equation were found in [1] and later a study from the spectral point of view appeared
in [2] (see also [3]). Lumps in DSII and three dimensional Sine-Gordon are described in [4] and
[5]. In references [6], [7] and [8] nontrivial dynamics of lumps of KPI are studied. These solutions
exhibit interesting scattering properties that were first noticed in [9]. The extension of these ideas
and solutions to DSII equation via spectral analysis of the Dirac operator on the plane is considered
in [10], while a complete study based on direct methods is performed in [11]; see also [12] for
related ideas. For some interacting solutions in the Yang-Mills equation framework, see [13].

Many of the above cited papers include an expansion of the eigenfuctions in terms of poles.
This fact strongly suggests a connection with Painlevé methods. This is actually the point that we
would like to explore in this paper. We shall try to prove thatthe truncation of the Painlevé series
gives us an algorithmic procedure to obtain solution. This method can be iterated. In the case
of lumps two iterations can be applied in such a way that the second provides us a wave number
that is the complex conjugate of the first and therefore the solution can be real. We shall apply
this method to two different PDE: KPI [14] and the complex version of the Generalized dispersive
long wave equation derived in [15] that we shall name GDLW [18]. As we shall see the method
works exactly in the same way for both equations.

We briefly review the contents of this paper:

• Section 2 is devoted to the description of the truncation of the Painlevé series and, the
subsequent iteration method, for KPI
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• In Section 3, the former procedure is applied to the obtention of lumps. An infinite set of
such solutions is obtained

• The same method is applied in section 4 to GDLW with similar results.

2 Truncation of the Lax pair for KPI equation

The well known KPI equation [14]

(ut +uxxx+6uux)x−3uyy = 0 (2.1)

can be also written in potential form by setting

u = 2mx (2.2)

In this case equation (2.1) reads
(

mt +mxxx+6m2
x

)

x−3myy = 0 (2.3)

The Lax pair [14] can be written as:

Iψy + ψxx+2mxψ = 0 (2.4a)

ψt +4ψxxx+12mxψx +6mxxψ−6Imyψ = 0 (2.4b)

or the complex conjugate

−Iϕy + ϕxx+2mxϕ = 0 (2.5a)

ϕt +4ϕxxx+12mxϕx +6mxxϕ+6Imyϕ = 0 (2.5b)

whereI =
√
−1 is the complex unit.

2.1 Truncated expansion of the Lax pair

The main idea in our method is to perform a truncated Painlev´e expansion in the Lax pair that
involves both the fieldmand the eigenfunctionsψ andϕ. As it is well known the Painlevé property
of a PDE requires that all its solutions can be expanded in generalized Laurent series around
an arbitrary manifold depending on the initial conditions that is called the movable singularity
manifold. When the Laurent series truncates at the constantlevel the manifold is namedsingular
manifold. This is on the basis of the Weiss Singular Manifold Method [16], [17] that we shall
apply in the following.

As it has been shown in many papers truncated Painlevé expansion, when applied to the Lax
pair, can be consider as a binary Darboux transformation sometimes called gauge-Bäcklund trans-
formation. To this end, let us consider a seed solutionm(0 as well as two different couples of seed

eigenfuntions
(

ψ(0
1 , ϕ(0

1

) (

ψ(0
2 , ϕ(0

2

)

. It means that:

Iψ(0
i,y + ψ(0

i,xx+2m(0
x ψ(0

i = 0, ψ(0
i,t +4ψ(0

i,xxx+12m(0
x ψ(0

i,x +6
(

m(0
xx− Im(0

y

)

ψ(0
i = 0 (2.6a)
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−Iϕ(0
i,y + ϕ(0

i,xx+2m(0
x ϕ(0

i = 0, ϕ(0
i,t +4ϕ(0

i,xxx+12m(0
x ϕ(0

i,x +6
(

m(0
xx+ Im(0

y

)

ϕ(0
i = 0 (2.6b)

i = 1,2

Truncated Painlevé expansion of (2.4)-(2.5) can therefore be written as:

m(1 = m(0+
φ(0

1,x

φ(0
1

(2.7a)

ψ(1
2 = ψ(0

2 −ψ(0
1

Ω(0
1,2

φ(0
1

, ϕ(1
2 = ϕ(0

2 −ϕ(0
1

Ω(0
2,1

φ(0
1

(2.7b)

whereφ(0
1 is the singular manifold. Substitution of (2.7) in (2.4)-(2.5) provides several polynomials

in φ(0
1 whose coefficients should be 0. We have manage the different equations with MAPLE and

the result is that we can define a matrixΩ(0
i, j whose exact derivative is given by:

dΩ(0
i, j = ϕ(0

i ψ(0
j dx+ I

[

ϕ(0
i ψ(0

j,x−ψ(0
j ϕ(0

i,x

]

dy+

+
[

ϕ(0
i

(

3Iψ(0
j,y−ψ(0

j,x,x

)

−ψ(0
j

(

3Iϕ(0
i,y + ϕ(0

j,xx

)

+4ϕ(0
i,xψ(0

j,x

]

dt (2.8)

such that

φ(0
1 = Ω(0

1,1, φ(0
2 = Ω(0

2,2 (2.9)

Therefore, the knowledge of two seed solutions
(

ψ(0
i , ϕ(0

i

)

, i = 1,2 of the Lax pair allows us

to compute the matrix elementsΩ(0
i, j given by (2.8) and yields the transformation (2.7) that can be

understood as a Darboux transformation in the sense that preserves the Lax pair by transforming

the seed functions
(

ψ(0
i , ϕ(0

i ,m(0
)

into new solutions
(

ψ(1
i , ϕ(1

i ,m(1
)

.

2.2 Iteration

It is a trivial exercise (It only requires a lot of calculations easily managed by MAPLE) to prove
that the matrixΩ(0

i, j defined in (2.8) can be also expanded in truncated Painlevé series of the form

Ω(1
i, j = Ω(0

i, j −
Ω(0

i,1Ω(0
1, j

φ(0
1

(2.10)

In particular, for the diagonal elements

φ(1
2 = φ(0

2 −
Ω(0

2,1Ω(0
1,2

φ(0
1

(2.11)

We have therefore, thatψ(1
i , ϕ(1

i , i = 1,2 defined by (2.7b) andφ(1
2 defined in (2.11) are respec-

tively eigenfunctions and singular manifold form1. It allows us to takem1
, ψ(1

i , ϕ(1
i as the new
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seed solutions of the Lax pair and expand it again in truncated Painlevé expansion by takingφ(1
2

as singular manifold. It just means that:

m(2 = m(1+

(

φ(1
2

)

x

φ(1
2

(2.12a)

ψ(2
j = ψ(1

j −ψ(1
2

Ω(1
2, j

φ(1
2

, ϕ(2
j = ϕ(1

j −ϕ(1
2

Ω(1
j,2

φ(1
2

(2.12b)

By combining (2.12a) with (2.7a) the second iteration can bewritten as:

m(2 = m(0+
(τ1,2)x

τ1,2
(2.13)

whereτ1,2 = φ(1
2 φ(0

1 . By using (2.11) and (2.9), we get:

τ1,2 =| Ω(0
i, j | . i, j = 1,2 (2.14)

Therefore, all that we need to obtain the first and second iteration ofm(0 is to compute the matrix

Ω(0
i, j given in (2.8).

3 Lump solutions of KPI

Now, we shall apply the above described method to obtain lumpsolutions of KPI. Let us start with
the trivial seed solution

m(0 = 0

Solutions of Lax pair (2.6) are in this case

ψ(0
j = ekj Q(x,y,t,kj )Z[N](x,y, t,k j ) (3.1a)

ϕ(0
j = e−nj Q(x,y,t,nj )Z[N](x,−y, t,−n j ) (3.1b)

where

Q(x,y, t,k j ) = x+ Ik jy−4k2
j t (3.2)

andZ[N](x,y, t,k j ) are polynomials of orderN in x that can be written as:

Z[N](x,y, t,k j ) =
N

∑
h=0

N!
h!(N−h)!

εh(y, t,k j )x
N−h

, ε0 = 1 (3.3)

Functionsεh(y, t,k j ) can be obtained through the recursion relation

∂εh+1

∂y
= I(h+1) [2k jεh +hεh−1] (3.4a)
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∂εh+1

∂t
= −4(h+1)

[

3k2
j εh +3k jhεh−1 +h(h−1)εh−2

]

(3.4b)

The first three elements of this expansion are:

ε1(y, t,k j ) = 2Ik jy−12k2
j t (3.5a)

ε2(y, t,k j ) = ε2
1 + δ2 =⇒ Z[2] =

(

Z[1]
)2

+ δ2 (3.5b)

ε3(y, t,k j ) = ε3
1 +3δ2ε1 + δ3 =⇒ Z[3](y, t,k j ) =

(

Z[1]
)3

+3δ2Z[1] + δ3 (3.5c)

where

δ2(y, t,k j ) = 2Iy−24k j t, δ3(y, t,k j ) = −24t (3.6)

In order to have polynomial solutions for the singular manifolds defined in (2.8)-(2.9), it is nec-
essary to haven j = k j to suppress the exponentials inφ0

1. On the other hand from (3.2), it is easy
to check thatQ(x,y, t,k j )

∗ = Q(x,y, t,−k∗j ). It suggests us that if we takek j for the first itera-
tion, we should selectk2 = −k∗1 for the second one in order to have a real expression for (2.13).
Furthermore it would be necessary to haveφ0

2 =
(

φ0
1

)∗
.

With the above requirements, the form of the seed eigenfuntions in which we are interested,
whould be:

ψ(0
1 = ek1Q1Z[N](k1), ϕ(0

1 = e−k1Q1

(

Z[M](−k∗1)
)∗

(3.7a)

ψ(0
2 = e−k∗1Q∗

1Z[M](−k∗1), ϕ(0
2 = ek∗1Q∗

1

(

Z[N](k1)
)∗

(3.7b)

where we have defined

Q1 = Q(x,y, t,k1) = x+ Ik1y−4k2
1t (3.8a)

Z[N](k1) = Z[N](x,y, t,k1), Z[M](−k∗1) = Z[M](x,y, t,−k∗1) (3.8b)

and we have used the obvious relations (check (3.3))

Z[N](x,−y, t,k∗1) =
(

Z[N](x,y, t,k1)
)∗

, Z[M](x,y, t,−k∗1) =
(

Z[M](x,−y, t,−k1)
)∗

(3.9)

One important property of the above defined polynomials (this property is very useful because
it allows us to perform integration by parts) is that:

∂Z[N]

∂x
= NZ[N−1] (3.10)

Actually, we have an infinite set of solutions that can be classified in terms of two integer numbers
N andM. Let us compute the first three cases
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3.1 N = M = 0

In this case, we have:

Z[0](k1) = 1, Z[0](−k∗1) = 1 (3.11)

and the eigenfunctions (3.1) are:

ψ(0
1 = ek1Q1

, ϕ(0
1 = e−k1Q1

, ψ(0
2 = e−k∗1Q∗

1
, ϕ(0

2 = ek∗1Q∗
1 (3.12)

Integration of (2.8) gives trivially

Ω(0)
i, j =





Z[1](k1) − e−[k1Q1+k∗1Q∗
1]

k1+k∗1
e[k1Q1+k∗1Q∗

1]

k1+k∗1

(

Z[1](k1)
)∗



 (3.13)

According to (3.3) and (3.5)

Z[1](k1) = x+ ε1(y, t,k1) = x+2Ik1y−12k2
1t (3.14)

Therefore, (2.14) gives us the following real positive defined expression

τ1,2 = Z[1](k1)
(

Z[1](k1)
)∗

+

(

1
k1 +k∗1

)2

(3.15)

that can be explicitly written as:

τ1,2 = X2
1 +Y2

1 +

(

1
2a1

)2

(3.16)

where

k1 = a1 + Ib1, Z[1](k1) = X1+ IY1 (3.17a)

X1 = x−2b1y−12t(a2
1−b2

1), Y1 = 2a1(y−12b1t) (3.17b)

3.2 N = 1, M = 0

In this case, we need to use:

Z[2](k1) = (Z[1](k1))
2 + δ(y, t,k1), Z[1](k1) = x+ ε1(y, t,k1), Z[0](−k∗1) = 1 (3.18)

and the eigenfunctions (3.1) are:

ψ(0
1 = ek1Q1Z[1](k1), ϕ(0

1 = e−k1Q1
, ψ(0

2 =
(

ϕ(0
1

)∗
, ϕ(0

2 =
(

ψ(0
1

)∗
(3.19)

Integration of (2.8) yields

Ω(0)
i, j =







Z[2]

2 − e−[k1Q1+k∗1Q∗
1]

k1+k∗1

e[k1Q1+k∗1Q∗
1]

k1+k∗1

(

(

Z[1]− 1
k1+k∗1

)(

(Z[1])∗− 1
k1+k∗1

)

+
(

1
k1+k∗1

)2
)

(Z[2])
∗

2






(3.20)
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Therefore

τ1,2 =
Z[2](k1)

(

Z[2](k1)
)∗

4
+

+

(

1
k1 +k∗1

)2
{

(

Z[1](k1)−
1

k1 +k∗1

)(

(

Z[1](k1)
)∗

− 1
k1 +k∗1

)

+

(

1
k1 +k∗1

)2
}

(3.21)

and finally, from (3.3) and (3.5), we have forτ1,2 the real positive defined expression:

τ1,2 =
(X2

1 −Y2
1 +X2)

2 +(2X1Y1 +Y2)
2

4
+

(

1
2a1

)2
{

(

X1−
1

2a1

)2

+Y2
1 +

(

1
2a1

)2
}

(3.22)

where we have used (3.6) to define

δ2(y, t,k1) = X2+ IY2, X2 = −24a1t, Y2 = 2y−24b1t (3.23)

3.3 N = 1, M = 1

From (3.5a) it is easy to see thatZ[1](−k∗1) =
(

Z[1](k1)
)∗

Therefore, the eigenfunctions (3.1) are:

ψ(0
1 = ek1Q1Z[1](k1), ϕ(0

1 = e−k1Q1Z[1](k1), ψ(0
2 =

(

ϕ(0
1

)∗
, ϕ(0

2 =
(

ψ(0
1

)∗
(3.24)

Integration of (2.8) with these eigenfuncions yields

Ω(0
1,1 =

Z[1]Z[2]

2
− Z[3]

6
, Ω(0

2,2 =
(

Ω(0
1,1

)∗
(3.25a)

Ω(0
1,2 = −e−[k1Q1+k∗1Q∗

1]

k1 +k∗1

(

(

Z[1] +
1

k1 +k∗1

)(

(

Z[1]
)∗

+
1

k1 +k∗1

)

+

(

1
k1 +k∗1

)2
)

(3.25b)

Ω(0
2,1 =

e[k1Q1+k∗1Q∗
1]

k1 +k∗1

(

(

Z[1]− 1
k1 +k∗1

)(

(

Z[1]
)∗

− 1
k1 +k∗1

)

+

(

1
k1 +k∗1

)2
)

(3.25c)

Thereforeτ1,2 is the real positive defined expression:

τ1,2 =

(

Z[1]Z[2]

2
− Z[3]

6

)(

Z[1]Z[2]

2
− Z[3]

6

)∗

+

+

(

1
k1 +k∗1

)2
{

(

Z[1] +
1

k1 +k∗1

)(

(

Z[1]
)∗

+
1

k1 +k∗1

)

+

(

1
k1 +k∗1

)2
}

(3.26)

{

(

Z[1]− 1
k1 +k∗1

)(

(

Z[1]
)∗

− 1
k1 +k∗1

)

+

(

1
k1 +k∗1

)2
}

that with the aid of (3.3) and (3.5) can be explicitly writtenas:
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τ1,2 =

(

X3
1 −3X1Y2

1 − X3
2

9

)2

+

(

3X2
1Y1−Y3

1 − Y3
2

9

)2

+ (3.27)

+

(

1
2a1

)2
{

(

X1+
1

2a1

)2

+Y2
1 +

(

1
2a1

)2
}{

(

X1−
1

2a1

)2

+Y2
1 +

(

1
2a1

)2
}

where we have:

δ3 = X3+ IY3 =⇒ X3 = −24t, Y3 = 0 (3.28)

4 GDLW equation

A different case in which the above described method can be tested is the following Lax pair

Iψt + ψxx+2mxψ = 0 (4.1a)

2myψxy+

(

I
Z

mxydt−mxy

)

ψy +2m2
yψ = 0 (4.1b)

and its complex conjugate

−Iϕt + ϕxx+2mxϕ = 0 (4.2a)

2myϕxy−
(

I
Z

mxydt+mxy

)

ϕy +2m2
yϕ = 0 (4.2b)

This spectral pair appears in [18] and yields to the equation

m2
y (nyt +mxxxy)+mxy

(

n2
y +m2

xy

)

−my
(

n2
y +m2

xy

)

x
+4m3

ymxx (4.3)

It was proved in [18], that this equation is related through Miura transformations to the dispersive
wave equation proposed by Boiti et al in [15], as well as to thesystem proposed by Fokas in [19].

4.1 Truncation of the Lax pair

Let bem(0 a seed solution of (4.3) and(ψ(0
i ,ϕ(0

i ) eigenfuntions of the Lax pair. Truncation of the
Lax pair can be understood as the gauge-Bäcklund transformation

m(1 = m(0+
φ(0

1,x

φ(0
1

, ψ(1
2 = ψ(0

2 −ψ(0
1

Ω(0
1,2

φ(0
1

, ϕ(1
2 = ϕ(0

2 −ϕ(0
1

Ω(0
2,1

φ(0
1

(4.4)

Straightforward calculation yields:

dΩ(0
i, j = ϕ(0

i ψ(0
j dx−







(

ϕ(0
i

)

y

(

ψ(0
j

)

y

m(0
y






dy+

[

ϕ(0
i

(

ψ(0
j

)

y
−ψ(0

j

(

ϕ(0
i

)

y

]

dt (4.5a)

φ(0
1 = Ω(0

1,1, φ(0
2 = Ω(0

2,2 (4.5b)
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4.2 Lump solutions

As it is easy to see in (4.5a), the matrixΩ(0
i, j is not defined form(0

y = 0. Therefore, we shall use as
seed solution

m(0
y = −1

In this case the Lax pair gives us:

I
(

ψ(0
j

)

t
+
(

ψ(0
j

)

xx
= 0, −

(

ψ(0
j

)

xy
+ ψ(0

j = 0 (4.6a)

−I
(

ϕ(0
j

)

t
+
(

ϕ(0
j

)

xx
= 0, −

(

ϕ(0
j

)

xy
+ ϕ(0

j = 0 (4.6b)

The solutions of (4.6) can be written as:

ψ(0
j = ekj Q(x,y,t,kj )Z[N](x,y, t,k j ), ϕ(0

j = e−nj Q(x,y,t,nj )Z[N](x,y,−t,−n j ) (4.7)

where

Q(x,y, t,k j ) = x+
y

k2
j

+ Ik jt (4.8)

and Z[N](x,y, t,k j ) can be written as the expansion (3.3) whose coefficients obeythe recursion
relations

∂εh+1

∂y
= −(h+1)

k2
j

[

εh +k j
∂εh

∂y

]

(4.9a)

∂εh+1

∂t
= I(h+1) [2k jεh + jεh−1] (4.9b)

The first three elements of this expansion are:

ε1(y, t,k j ) = − y

k2
j

+2Ik j t (4.10a)

ε2(y, t,k j ) = ε2
1 + δ2 =⇒ Z[2] =

(

Z[1]
)2

+ δ2 (4.10b)

ε3(y, t,k j ) = ε3
1 +3δ2ε1 + δ3 =⇒ Z[3] =

(

Z[1]
)3

+3δ2Z[1] + δ3 (4.10c)

where

δ2 =
2y

k3
j

+2It , δ3 =
−6y

k4
j

(4.11)

Therefore theτ1,2-functions are given by the expressions (3.16), (3.22) and (3.27) where we have:

X1 = x− a2
1−b2

1

(a2
1 +b2

1)
2

y−2b1t, Y1 =
2a1b1

(a2
1 +b2

1)
2

y+2a1t (4.12a)
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X2 = 2a1
a2

1−3b2
1

(a2
1 +b2

1)
3

y, Y2 = 2b1
b2

1−3a2
1

(a2
1 +b2

1)
3

y+2t (4.12b)

X3 = −6
a4

1 +b4
1−6a2

1b2
1

(a2
1 +b2

1)
4

y, Y3 = −24a1b1
b2

1−a2
1

(a2
1 +b2

1)
4

y (4.12c)
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