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Abstract: In this paper we present two results. First, we derive the most general group of infinitesimal transformations
for the Schrddinger Equation of the general time-dependent Harmonic Oscillator in an electric field. The
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tonian to a much simpler form. The relationship between squeezing and dynamical symmetries is also
stressed. The second result concerns the application of these group transformations to obtain solutions
of the Schrédinger equation in a time-dependent potential. These solutions are believed to be useful for
describing particles confined in boxes with moving boundaries. The motion of the walls is indeed governed
by the time-dependent frequency function. The applications of these results to non-rigid quantum dots
and tunnelling through fluctuating barriers is also discussed, both in the presence and in the absence of a
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1. Introduction.

The Fermi accelerator is a simple but clever physical
model [1] that as early as 1949 Fermi believed to be
effective for explaining the origin of cosmic rays. Later
on, Ulam and several other authors improved the origi-
nal model to take into account other more sophisticated
features not included in the original scheme [2, 3] and
[4] In its most simple form, the model considers a par-
ticle moving freely between two rigid walls. One of the
walls remains at rest while the other oscillates with time
under a not necessarily specified periodic law. This seem-
ingly trivial ping-pong device has recently been applied
to other phenomena with a surprisingly degree of success.

Seba [5] used it as a model to explore chaos in quantum
mechanics. The authors of the present work have previ-
ously reported [6, 7] a detailed study of the harmonic os-
cillator with time-dependent parameters, also using spe-
cific forms for this set of generalized variable frequencies.
Other authors have elaborated more sophisticated appli-
cations based on the above model [8, 9] to describe theo-
retical models of Bose-Einstein condensation. The same
approach has also been used in the characterization of
quantum states of charged or neutral particles trapped in
Penning [10] and Paul traps [11, 12], as well as in the de-
scription of the process of photon creation due to quantum
fluctuations in cavities with moving walls [13] and in the
characterization of metastable states in the presence of
tunnelling with fluctuating barriers [14].
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Fostered by all of these really interesting physical effects,
our aim here is to present a systematic study and an ex-
plicit exact construction of these new quantum states, of
interest in systems in which time dependence plays a cen-
tral role. The main tool used within the paper is the use of
the maximal kinematic symmetry group of the generalized
harmonic oscillator. Since the price to pay for introducing
a time-dependent electric field is almost negligible, we
have been able to consider such a case with almost no
additional formal effort. After a complete analysis of the
generalized symmetry group, we use it in a practical form
to construct part of the huge set of exact wave functions
that arise as a consequence of the set of generators of the
group. Of special interest are those in which the time-
dependent electric field coupled to the oscillator charge
plays a dominant role.

Let us begin with the physical system described by the
following Hamiltonian:

2

H(t) = 33() + Bz(t)wo[P i

+ %mwﬁ&(t)xz — gxE(t), 1)

where {Bs(t), B2(t) and Bi(t)} are real functions of time, g
is the oscillator charge, and E(t) is the external electric
field. Notice that we have rearranged the Hamiltonian in
such a way that all of these functions are dimensionless.
Note also that one can easily achieve several limits by
a judicious choice of the time-dependent functions: the
free particle with or without time-dependent mass, the
harmonic oscillator in the absence of electric field, etc.
Furthermore, the Hamiltonian (1) also includes the case
of a well with moving boundaries as it has been shown in
[6] by the authors of the present work. These limits will
also be carefully examined for each class of wave function
obtained by the group theoretical method that we develop
in Sections 2 and 3.

(1) = wi{Br(1)Bs(1) —

The Schréodinger equation arising from the Hamiltonian
(1) in coordinate representation has the form:

lhl,[/t - 83 d’xx - ihBZUJu (lex + 15‘1[})

1
+ imwﬁ&xz—qu) U, )

where, as usual, {i(x, t) represents the wave function in
the same representation. Before calculating the Symme-
try Group of (2) in an appropiate way, we shall reduce
the system to a more tractable form by using a unitary
transformation. After this transformation, the symmetries
and wave functions will be constructed in Section 3.

2. Reduction by unitary transforma-
tions

In this Section we shall follow the procedure described in
Reference [15]. The aim is to reduce the initial Hamilto-
nian (1) to the form:

Ho(t) = ihW()W™*(t) + W(t)H(H)W™ (1)
2

_ P 1 2.2
= o + 2mQ(l‘) X (3)

while the state vectors of both Hamiltonians are related
as usual:

| W(1) = W (1) | Wo(t)), 4

where | W,(t)) is the state vector of the Hamiltonian H,(t)
and | W(t
Defining the effective frequency Q?(t) of (3) as

)) is the state vector of the Hamiltonian H(t).

Bs(t) 2B5(1)  4B3(1)

o
(0} +w {Bz( )M—Bz(t)} A _ Bt 5)

direct calculation shows that the W/(t) operator appearing in (4) has the form:

W(t) = exp{ —qE;(t) —1

Bs(1)

exp { (woPa(t) —

with

572 ) = Z() + = (v(OE,() — u(OE(1),  (7a)

/{E (s)dE, (s

)= E)E )} expit 0 — mi0)

Pl }e o{ 35 Loslbatolp. . | o)

(

E.(t) = /0 VB (5)E(s)u(s)ds, (7b)
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t)—/ VB3(s)E(s)v(s)ds

and {u(t), v(t)} is a set of two independent solutions of the
classical equations of motion corresponding to a harmonic

(7¢c)

oscillator of variable frequency Q?(t):

i(t) + QX (t)u(t) = 0, u(0) =1, M“ho—wm_o
(8a)
vm+mmwnzuwm:0,%gho—wm 1. (8b)

We shall use Z(t) = Gyu(t) + Gov(t) to refer to an arbi-
trary linear combination of the main solutions {u(t), v(t)}.
For Q?(t) real, one can consider with no loss of generality

|

Wi(t) = exp{ —qE;(t) —1

/{a@dE

that u(t) and v(t) are also real. Thus, Z(t) represents any
classical solution of the equations of motion. To include
the time-dependent electric field in the unitary transfor-
mation, we first define, in general:

E.=E(t)= /0 V B3(s)E(s)k(s)ds, 9)

where k(t) will usually be one of the functions: {u(t), v(t)}.
Following the method described in [15, 16], one can eas-
ily generalize the W(t) operator to include the time-
dependent electric field. It takes the final form:

EV(S)dEu(S)}}

2
h(t 1
exp{a(t)a® — a*(t)a} exp {B(t)a2 - B*(t)é} exp {l% [a*a + E]} . (10)
where the a(t) appearing in the coherent state displacement operator is:
hmw, i df(t)
t) = — f(t —, 11
alt) = =/ =5 (() w,,dt) (1)
) = Z(0)+ 7= (ViE() — u(DE() (12)
and the h(t) and B(t) appearing in the squeezed states generator are [15, 17]:
w,Balt) — S0
h(t =2arctan73m, 13
(0 wo(1 + Bs(1)) (13)
B0 T L .2 2 Bl
[waBZ(t) — 283(r)] + w2[1 — B5(t)] 2w, [wuBZ(t) - 283(t)]
B(t) = argtanh - 5 exp 4 —iarctan 5 (14)
[woa(t) — B4 + it + Bs(01 W B5(1)2 = 1)+ [wofolt) — 222 ]
(
Up to a global phase factor, the electric field only en- with variable frequency given by:
ters the coherent states displacement operator but not the
squeezing operator. The whole problem has thus been re-
duced to one of a time-dependent Hamiltonian operator: ; 3
1) = (BB — B + o | B2 — | 4 £ 3
Bs 285 4B;
(16)

)= o (o e, (15

with a well-defined unitary transformation given by (3),
(4) and (6)

[SZE]
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3. The symmetry group

Here we shall follow the Olver formalism [18] to find vector
fields associated with the symmetries of the Schrodinger
equation arising from the Hamiltonian (15). These will all
be of the form:

U = Sl )+l ) o+ Bl ) (17)

oy’

PV = V4 or— + ¢
p ¢¢¢¢

with a second prolongation:

a d y 0

Applying the formalism, we end up with a set of six vector fields:

V1—U(f)*+*'() ¢’

A 0
Vo= vit) o+

uz(t) L+ u(t)u(t)xi - 7{

N . E 1 d{u( t)v(t} 5} d{u(t)v(t)}
W5 T2 dr Yax

Vs = vz(t)% + (Ot —

Vo =

Since the only functions appearing in this set are Q?(t)
and {u(t), v(t)}, this shows that the symmetry group of the
reduced Hamiltonian can be found simply by using the
time-dependent functions appearing in H,(t) and the set
of linearly independent solutions {u(t), v(t)} for the clas-
sical equations of motion. It is now interesting to consider
the form of these generators when they act on the wave
functions. The infinitesimal generators can be written in
terms of x and p operators as:

% = {ultlp — mifox}, (20a)

0 = L {u(thp — mu(t)x), (200)

05 =~ L {09 — mu(i(){xp + px} + m?a0x’),
(200)

dt

+¢” 0. +¢“ e o (18)
30 (19a)
et (19b)
)+ Qe )—fﬂ(t)}xz}gb%, (19
a
t)} {Qz V() — a(t)i(t)}x? } %@ (19d)
! { (910 + Q) - vz(t)}xz} b2 (19)
2 oy’
P
= (19f)
{
Vi = —ﬁ {U(t)V(t)p2 ’;M{w + px}
+ m*a(t)()x}, (20d)
Vs = — 5 h{vz(tp — mv(t)v(t){xp + px} + m*v(t)’x*},
(20e)
Ve =1. (20f)

The set of {vi,....vs} has already been reported recently
in [19] and generalizes those described in [20] and [21] for
the free particle case and the harmonic oscillator with con-
stant frequency. The generators {v1, ....vs} can be reduced
to these particular cases: (Q%(t) = 0 and Q?(t) = w?).
They are antthermitian, although it is possible to improve
the situation by constructing the function o(t):

o(t) = u(t) + iQuv(1), (21)
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where ), can be identified as the value Q, = Q(t = 0).
We now define the operators:

A = Alt) = mo(tx},  (22)

¥{U(t)
— p

AT = AT(t) = ————{a"(t)p — ma"(t)x}. (23)

\/2 hQ,

It is easy to check that if {u(t), v(t)} is a set of normalized
linearly independent solutions of the classical equation of
motion, we have:

[A(#), A™(1)]

d d 1
AW = AWM+ AW, Ho(t] =0, (29)

1, (24)

in such a way that the pair A(t) and A*(t) are time-
dependent invariants for H,(t). Let us construct a time-
dependent realization of the above algebra:

Vi=i {A +A*(t)}, (26a)
Vv, = 2h0 S5 1At —AT(1)}, (26b)
K, =K. (t) = % {QLO\A/3 —iQ Vs + 2\74} = %A*(t)A*(t),
(26¢)
n
Al = UL {a(t)p mgtd {woﬁz(t) -

At = VB {o*(t)p +m 24 {waﬁz(t) -

If {u(t),v(t)} is a set of normalized linearly independent
solutions of the classical equation of motion, the operators
Ag(t) and AL(t) also fulfill

[Ae(1), AE(1)]
d

LAl = A+ -

I
—_—

(30)

LIA(0). H(0)] = 0. (31)

The operators built only with Ag(t) and Af(t) are invari-
ant. The operator J(Af(t)Ag(t)+ 1) is also hermitian, and
it belongs to the class of Lewis-Riesenfeld invariants for

S 1( i A 1
K=K (t)= i{(TV3 ngV5—2V4} = SAMA(),

(26d)

1 + 1

5 (A(t) A(t) + i) .
(26e)

These five generators fulfill the following set of commuta-

., i1, .
KO:KO(t)zi{Q—O\/g—kQO%}:

tion rules:
(Ko K] ==K K, K] =-2K (27a)
A A 1, o A 1 A .
[V1,K+]:—§{V1+100V2},' [\A,K,]:E{\A—log\/z},
(27b)
7 . 1.V .
(Vo Ki] = Slig = Vb Vo K] = S{igy + Vo (270)
A A iQq ~ PN im A A i »
[VLKO}:TOVL' [V1,V2]=—?? [VZ,KO]Z—TQOVL
(27d)

This is the Lie Algebra of SU(1,1) ® H3, where H3 rep-
resents the Heisenberg Algebra. The construction only
holds for a vanishing electric field. It is not hard to ex-
tend the results to the case of non-vanishing electric fields,
both constant and time-dependent. Let us now define the
operators:

Bii) o] E)+IQE()
265(1) a(t)}x VB (1) } )
B3(t) _ d*(t) _ Eu(t) - iQoEv(t)
2B5(1) a*(t)}* K/ } )

(

system (1). For a more detailed discussion of this type of
operator, see [22] and [23].

4. The wave functions

The unitary transformation W/(t) given by (9) can be used
to construct the wave functions:

| W(1)) = W (1) | Wo(t)), (32)

[Sgs]
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or in terms of the coordinate representation:

Wi 1) = (x| W) = (x | WH(2) [ Wo(t)) = W (1)Wo(x, 1). (33)

For an arbitrary function =(x, t), the following identities hold:

a
exp {a(t)a} =(x, t) ==(x+a(t), 1), (34)
exp {a(t)(zx% + 1)} =(x, t) = e =(e2Wx, ). (35)
Making use of these, we finally find:
exp { =5 5 [IES)IENS) — E)IE(SN} (g im o g 7
Vel 1) = o ew {5160~ 4 51 [200 - Lotn] ] (30
m X : q . 1 Bs(1) X = X q

eXp{th{Z(t)_mg(t)_Z[waBZ(t)_ZB3(t):| B3(t)}}_{m_2(t)+mg(t)’t}'

g(t) = u(t)E(t) — v(t)Eu(1), (37)

(

with =(x, t) any wave function of the harmonic oscilla-
tor with variable frequency. The construction of the wave
functions of the generalized oscillator in the presence of
a time-varying electric field requires the solution of the
following second-order differential equation.

L 0_ n 9 _ 1 5 g
tho2=(y. 1) = —ﬂafyz—(y,t) +5mQ(t)7y"=(y, 1) (38)

To this end, we make use of the symmetries previously
found in (17) [18]. After direct substitution, it is not hard to
conclude that all the wave functions must have the general
form:

Z(y, 1) = exp {A(t)y* + B(t)y + C(t)} W(D(t)y + M(t)).
(39)

|

Now, W(z) is the unknown function. Let us now impose
that (39) should be a solution of the Schrédinger equation
(38) and that W, should be the Wronskian of the classical
equation of motion. Defining:

Z(t) = Gu(t) + G(t), (40a)
G(t) = Z(t)* + C3v(t)%, (40b)
Y(t) = Gsu(t) + Cyv(t). (40¢)

We have W, = GGy — G, G5. We find the following non-
trivial cases:

e For G5 # 0, there exists a solution for W(z) fulfilling the ordinary second-order differential equation: W(z) +

(—% + v+ 3)W(z) = 0. The solution takes the form:
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2.0 =y e +Gy(§)t)' (1)

_ I 1 GZ(t) — G Y(1)
=iy, 1) t)% exp{ (v+§) arctan [CSW]}

im {C1C5 W, + GG)Y (1) — (W2 + C3C)Z(1)}°
&P CGW2G(1)

i {gggfg —\/G(t)(ft{ e }y”{wv{z(y,n}ﬂDv{—z(y.t)}}, (42)

G()

where D,(y) and D,(—y) are the Weber functions. The Wronskian W, can take an arbitrary constant value. As
is well known, when v = n is an integer, the solutions can be expressed in terms of Hermite polynomials:

=y, t) = C(/;)% exp{i (n + %) arctan I:CSCSZ(;)/D%Z(%M]}

{ m {GG(W, + GG)Y(t) — (W2 + C§C§)Z(t)}2 +2iC$C§W3Y(t)2}
exp

4h GGW;G(1)
G(t) +2iGG y? a | Y@ Y 2(y, 1)
exp{ h{ a4 {maf{ G(r)}_’QCSG(f)}yHH"{ e B

o If W, =1, there exists a solution for W(z) fulfilling W(z) — zW(z) = 0. The solutions can be expressed in terms

of Airy functions:

_ .y h* Z(1)?
290 = Y5 T am v
_ 3 Y(t) , . h Z(1) ; mnoZ(t)?
Sl = Y(0)} ex"{ 2h Y(t)y oY T 2 v

} {MAi(z(y, 1)) + A2Bi(z(y, 1))} . (44)
o If W, =1, there also exists a solution in which W(z) = 0. These solutions take the form:

- _ ] m Y o oy b Z( y _hz
=) = T eXp{Zh v "Vt m Y(t)}{)\1(Y(t) m (t))“z}' )

The dimensions of the constants are: [Gi]=TL™"; [G]=L"";[G]=L;[C)=LT";[C]=L"and [W,] =1
and they may be real or complex depending on the properties of the solutions.

One can always return to the original system by back-transforming these solutions in the way described above.
We shall write the back-transformed solution only for the sake of completeness:

i A2 t
vett) = — e {3 0 [E 6050 - E610E 61+ 90900} |

Bs(t)*
_.q X B3(i) x? — X q
eXp{ iz g(t) oI 5p {woﬁz(t) ,%(t)} Bs(1) } ‘{ 50 mg(f)rt}, (46)
g(t) = u(t)E(t) — v()E,(), (47)

with = {x, t} any of the functions just found. Let us briefly consider certain particular cases of interest.

877
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5. Particular cases of the wave functions

a) The free particle.

In this case, obviously Bs(t) = 1, Ba(t) = 0, Bi(t) = 0 and E(t) = 0. Also, and trivially, u(t) = 1, v(t) = t. The
infinitesimal generators have been already described in [20].

e An initial judicious choice of the free parameters C;, G, G; and G, taking into account their physical dimensions,
leads us to the explicit solution:

1 m VX2 p lox L,p? t mvex + L,p
Yix,t) = —— [ — i— —i A, 48
(o t) \/7[g+vgte)(p{12hla+vot+[hlo+vut thml,,—i-vot}( Lt T 2) (48)
which reduces to the well-known plane wave solution for v, = 0.
e With another set of free constants, we also find the normalized wave function:
2
1 Ve y g
Q,\* Mo — a*)2 — o2 ( 2h
Wo(x, ) = (”’ ) ewfse—ay—c} p \VE )L (49)
wth V1+iQ,t 14+iQ,t
where Qg has dimensions of frequency and where we have chosen % = /Q),. Below, we list the physical properties of
this latter solution:
(x) = L{'( ) 4 (o + a*)Qot} (Ax) = h 14+ Q212 (50a)
=\ 2mg, lile—a a+ a’)Q,t}, =\ zma, V ot a
tha ;- tho
(p) =/ "2 (e +a), (Bp) =/ "5 (50b)

(E) = % {1+ (a+ a2} hQ,, (AE) = %hﬂo\/% +(a+ a2 (50¢)

This represents a Gaussian state that moves at constant velocity and with a probability density given by:

2
o pn V5 m0, {x = /5 fila = o) + (0 + @)t} } .
| Walx, t) |°= WEXP 5 Ty . (51)

This wave function represents a coherent state: an eigenstate of A(t), with a the coherency parameter. It represents a
statistical distribution of states with momentum p and a stationary momentum wavefunction given by:

_ 17 1 %2 T e Y
Ol = exp{4(a a)}exp{ (e a)}. 52

e There also exist solutions of the free particle that use Airy functions [24]:

L+ wnt h
Z(t) = ll " Vlt, vilo = v = —, (53)
1 movex? i X i 3
Poot) = N {'E vt 20+ votz(t) — 3240 }
. X 1 5 . X 1 5
{)mAl{lg o 220 } + LBi { v 220 H» . (54)
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For A, =0, the wave function can be normalized on the positive real semiaxis.
e Finally, we shall construct normalizable states along the real axis for the free particle using the Weber functions or

the Hermite polynomials for the integer index of the Weber functions. We now define %’ = Q, and %2 = O, both
with dimensions of frequency; also, GG = 0 and G4 = —%, with dimensions of velocity. We obtain the following wave
function:
. p2
Wt (on)1 —t(n+%)arctan{1%’1t}exp{—ﬁ’hiﬂg&b%}
alx, t 4 exp
wth V2 nl(1 4 204t + (Q2 + Q2)12)7

S P T {X+ P, }2 H mQ, x— Dot 5)
P12h 1+ () + iQu)t m(Q + Q) " h ittt |

These latter solutions have also been used to construct and characterize the in-phase entanglement of two particles.
Any state of the free particle could in principle be described by an appropiate superposition of individual exact states.
The ones now described are states with average position, momenta and energy, given by:

P, h 1
(x) = ;t, Ax = \/mQ (n + 5) (1420t + (Q2 + Q3)12), (56a)
02+ Q2 1
o) =P, AP=\/mh”g1 (n+§), (56b)
Pz Q2+ 1 Q2+0Qf [ 20, P? 1,
<E>_ﬂ+h2700 (n‘l‘i), AE =h ZQO Q%+Q%m(2n+1)+§(n +n+1)- (56C)

These expressions show that we are dealing with an equivalent system whose average energy equals that of a free particle

2 2
033?1. Note, however, that this is a dispersive wave in position, but
that momentum and energy remain constant. This solution is physically equivalent to the representation of a collection

of states with momentum distribution given by:

plus a harmonic oscillator of constant frequency

D Q : —i(n + 1) arct &
= (Q2 + Q2)5 /277! "1 2mh(@7 + @)

i) Q _p—P,_
ex"{ Gy +i0y) [V ah Yoy [ (57)

An analysis of the probability density of this wavefunction shows that we are really describing a vanishing state in the
remote past and in the far future, while at the present time it is described by a Gaussian distribution that grows from
zero and vanishes at longer times.

b) The well of moving walls.

By setting some infinite moving boudaries for the free particle one can obtain solutions for an infinite well with the walls
moving under some time-dependent law. The general solution (39) allows the construction of such wave configurations.
Indeed, the boundary conditions leads to:

/bm |Wix,t) Pdx < oo, W(a(t), t) = W(b(t), t) =0, (58)

where a(t) and b(t) are the bounded limits of the moving walls. We have found the following possible solutions under
these conditions:

2 im n?m2h? , X — Vgt —t,)
Y, (x, t)= R TT— eXp{Zh(t—tO) (X2+ peT ) }sm {nni(w’ —va)(t—to)} (59)

Sg=]
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Here, a(t) = v4(t — t,) and b(t) = v,(t — t,). Therefore, the walls move with constant velocity and the width is a
time-dependent function given by the law L(t) = (v, — v,)(t — t,). The case v, = 0 is the particular one discussed in [25].
Other solutions constructed from (39) with similar boundary conditions are:

A ih’ k} Kk} m? kn
Yot = L(t)exp{—mmzm—vm{w“Zwvﬂ‘%—vﬂ)‘%—av}}
imvy—v, vya — Vb h? k; 1 1 ’ 16 213
o9 3T e 2w () | [ A= et ).

ke no kit
ylx,t) = 0 a—i—val‘—mm—x .

The last solution represents the state of a particle in an infinite square well with moving boundaries of the form:

h? K32
= ol — 7#[ 2
a(t) =a+ vt Gm2(b =) L(1) (62a)
h? Kt
L(t)=b(t)—a(t) = b —a+ (v» — v)t. (62¢)
Quantization of momenta forces the k, to be one of the roots of the transcendental equation:
V3Ai[—k,] — Bi[—k,] = 0. (63)

This latter condition allows us to calculate the wavefunction and also the limits of the boundary, as stated above. For
example, here if v, = v, = v, the function takes the simple form:

3
2im3 (b —a)? ook im ok m? (b —a)® ,
WYix,t) = Aexp 34 e V_ﬁ(b—aPt exp - V_ﬁ(b—aPt {X_G_F e v}
{37Ai{y(x, )} —=37"Bi{y(x, 1)}}, (64)
k, ook,
y(X,t) - (b—a) ‘[U"‘Vt—WMT _X]’, (65)

which represents a well of constant width but with walls accelerating quadratically in time. The solutions for a moving
wall with constant velocity were already described by [25]. The accelerating moving wall provided by the expressions
(61) and (61) are a new and interesting result which can be checked by inserting these expressions in the Schrédinger
equation.

Let us now work with the solutions of the free particle containing Hermite polynomials. After some algebraic calculations,
we are able to set boundary conditions of the kind described above. The solutions and boundary laws now take the
form:

1 %+Q%

. 0
(on ) T exp {—%70%%()% Vz} exp {—[ (n+ 1) arctan {g—l + =0 t}}

[[F ev'H2(y)dy (14200t + (2 + 09)2)’

o iﬂﬂ{x—x PR - }2 H, {4/ ™5 (X =% = vE) (66)
P120 (1 + (@1 + iQ)1) SO +iQ, ! h T+20t+ (@2 +Q) |




Juan D. Lejarreta, Jose M. Cerverd

which is normalized between limits, and changes with time in the form:

h
aft) = ay/ o1+ 2001+ (O3 + O +x, + v, (67)
[ h
B mQa\/1+201t+(Q§+Q$)t2+xa+vt, (68)

with o and B two arbitrary roots of the Hermite polynomial H,. Restricting ourselves to the states with odd index
(2n + 1), we obtain:

b(t)

: 3 Q O% 03 Q+iQ 2
mQ, )1 exp {—t(Zn + 3)arctan {—1 + }+ i35 1+((1)1+llo X }

h

q'J2n+1(X' t) = (

1

(1420t + (2 + Q2)2) fBe v'H3, 4 (y)dy

mQ X
H,, 0 . 69
2“{\/ h \/1+201t+(03+0$)t2} (69)

These are normalized states of the free particle in a square well with width starting at ¢ = 0 and variable length
L(t) = mQ V14201t + (Q2 + Q2)£2, where B is any root of the polynomial Ha, 1. Also the expression (66) is a new
and interesting result which can be checked by inserting this expression in the Schrodinger equation.

c) The harmonic oscillator with variable frequency.

In this case, obviously B5(t) =1, Ba(t) =0, Bi(t) = %i:; and E(t) = 0. Also, in the case of an oscillator with constant
frequency w, the characteristic functions are u(t) = cos(w,t) and v(t) = wig sin(w,t). The infinitesimal generators have
already been described in [21]. Some of the solutions have already been described in [6]. We shall proceed by discussing
the most general case with variable frequency Q?(t). The first step is to find a pair of normalized solutions: {u(t), v(t)}
of the classical equations of motion. As we did in the free particle case, one can construct the wavefuntions simply with
the help of {u(t), v(t)} and the general expression described in Section 4. For the coherent class of solutions, we now
obtain:

~(mQ, \ " exp {—Sm[al} iQ,a2v(1)
Yol t) = (W) a0 + Q) {_u(t)+i00v(t)}

im a(t) + iQ,v(t) 2mQ, ia
& {Zh u(t) + iqu(l‘)X2 h o ou(t)+ iQOV(t)X} (70)

and for those containing Airy functions, we obtain:

A 1 Lu(t) + vav(t) (Lu(t) + vav(t)?
P = e Uit oot U st ovr
im l1u(t) + V1V(t) . lzu(t) + Vzv(t .
e {% ha(t) T v1v(t)X2 l(l1u(t) ) ]» {AAiy(x, t)] + A2Bify(x, t)]}, (71)
Y1) = X (Lu(t) + vav(t))? 72)

Lu(t) +viv(t)  (Gu(t) + viv(t)?

One can also construct wavefunctions for the Weber case, but we find it more useful to restrict ourselves to the case in
which the Weber functions become Hermite polynomials owing to its broader physical applications. After some algebraic
calculations we obtain:

1

271 (A(t)? + B(t)?)3
A +iB(Y) 5 mM}H{ moox—ﬂﬂ}

W (x, 1) = (

o—(Q1+iQ0)x0)2  B(t
) —tn+ )arctan A((t;}exp{ 2h(QX + il (15[ L) A(r)+(i33(t))}
m
2h A

(1) + iB( t)X S Al + B Al + B(1)
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where:
F(t) = xou(t) + vov(1), (74a)
A(t) = u(t) + Qiv(t), (74b)
B(t) = Qov(t). (74¢)
The integration constants are defined as G5 = —x, (an arbitrary length), C4 = —v, (an arbitrary velocity) and arbitrary

frequencies given by % =Q, and % = ()y. Their position, momentum and energy averages are explicitly given by the

expressions:
(x) = xou(t) + vov(t), Ax = \/m?) (n + 15) (A(t)2 + B(t)?), (75a)
. . mh 1 . .
(p) = mlxi(t) + vyi1(1), Ap = V o () o+ e, (75b)
(E) = () + —m(x)2Q(t)* + N (n + 1) {(A(t)2 + B(t)?)Q(t)* + A(t)* + B(t)z} (75¢)
2m 2 2Q, 2 '

AE = zg { Yt n+n) {{( (1% + B(t))Q()2 + (A1) + B(t)z)}2 _ 4Q§Q(t)z}

1

;)a (14 2n) {(A(t)2 + B()F (1) Q1) + 2Q(0)°(A[DA(1) + BB F (HF (1) + (A(t)” + B(t)z)F(t)z}} - (75d)

These states are a generalization of those described in [6]. Because the solutions do not admit separation of variables,
they can be used to construct infinite quantum wells containing a quadratic potential by setting the boundary conditions
at the frontier of the well. In this case the momentum distribution is:

S Y PP _
Falp, t) = 7%/_ exp{—lg( 2—)} a(x, t)dx = (76)
S exp {—i(n + ) arctan 5 } Q2 4 iV = (@ = Qo) B(t) — tB(t)
B V2inl (A1) + B(t)2)4 Q, A(t) + iB(t) — tA(t) + iB(t))

ex ;{t_AmHB(t)H Ml — (@ = Q) } /0. p—mF(1)
P12 '~ A+ B ) 1P (t)+lB(t)—t(A(t)+th) \/m

and the enerqgy distribution takes the form:

(wQo) 1 VnTk! (=1)"7" exp {i(k + 1wt}
2 VwC(t) —iC(1)

x4 (o — (@ + iQ,)x%,)> wB(t) — iB(t) wC*(t) — iC*(t) : wC(t) + iC(t) :
e Q, wC(t) — iC(t) wC(t) —iC(t) wC(t) — iC(t)

Cl(w, t) / or(x, )W, (x, t)dx = (77)

n+j /

=1z { 16wQ, }é
= M=k =) L(wC(1) + iC(0) (wC(t) — iCx(1)

H Q, maw(x) — i(p) H, [mw — (1 + iQo)x,
n—jy —] ’
mh \/(wC(t) — iC()(wC*(t) — iC*(1)) h \/ wC(t) + iC(1)(wC(t) — iC(1))
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where C(t) = A(t) + iB(t). The particular case of constant frequency Q(t) = Q, is obtained with the choice Oy = 0,
xo = 0, vy = 0, and the pair of functions u(t) = cos(Q,t) and v(t) = Qiosln(Qgt). For this well-known situation, in
expression (77) one can carry out the summation exactly, which finally yields:

PPN (o5 LESVCL L Y DU DAY B o [ Ve,
Gt = o, v 2Pk r ) e i{n g | 2Pl 205, | )

2

if n + k is even, and zero otherwise. Indeed, P][x] denotes the associated Legendre polynomial:

(1 _ XZ)% dm+[

2 [
gt (79)

[XI= (="

It could be suggested that an arbitrary state with n modes in the typical frequency Q, oscillator can also be viewed as
a superposition of states with k modes of another oscillator with arbitrary variable frequency w. The statistical weight
of each of these states in the former n-state would be | C} (w, t) |

d) The case with a non-vanishing time-dependent electric field.

So far we have considered systems with vanishing electric field. Let us now introduce a time-dependent electric field
E(t) coupled to the oscillator. Using the results of Section 2, the wavefunctions of the system with the electric field take
the general form:

LI'JE(X, t)

P2 t .
v {50 { [ atEIas + gttgio} few { = Tatnn} v {x+ Lon. 1}, (80)
W(EL () — OEL0), )

g(t)

with E,(t) and E,(t) as in (9) and W(y, t) any of the wavefunctions already analyzed in the previous Sections in the
absence of an electric field. The mean values are now:

(x)e = (X)e_o — % {u(DE(1) = v(t)EL(8)} Axg = Axg_o, (82a)

(P)e = (pe=o — q{u(O)EL(t) — V(t)E,(t)}, Ape = Apeo. (82b)

The momentum distribution can easily be related to that of the primitive (non-field) state. It now takes the form:
Oelp. 1) = exp {510 (20 -+ qWINED — HOE(ONHEOul) - ale) — Exla0{0) - (0]} |
exp {—z‘m—h | EsutsE s - v(s)Eu(s))ds} o {p + qla(OE() —VOE(L 1}, (83)

The photon distribution changes according to the initial wavefunction, W(y, t), chosen state. This is why it must be
calculated in each case for this primitive wavefunction.

(

6. CO“CIUSlonS and flnal remarks fluctuating barriers [26]. Other examples of this are the
study of quantum cascade lasers [27] and the description
of quantum walls deformed by electrostatic potentials or

Time-dependent harmonic oscillators and cavities with
even due to the plasticity effects that solids exhibit at

moving walls are of paramount importance for describing

the physics of a few particles interacting with lasers in small scale when confronted with higher-intensity fields

the nanoscale world. This has been shown to be of great of magnetic origin [28]. All of these effects are part of a

importance in the study of tunnelling in the presence of growing branch of physics with excellent prospects in re-
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search ranging from pure quantum mechanics to industrial
applications. The present paper, although originally quite
mathematical, attempts to present a systematic study of
the one-dimensional Schroddinger equation subjected to
time-dependent harmonic potentials, with or without time-
varying electric fields. First, a systematic study of the
symmetry group for the harmonic oscillator with both time-
dependent frequency and electric field is presented in or-
der to classify the solutions later on. It is interesting
to note that from the beginning this symmetry group ex-
hibits an important set of features such as the coherent-
state representation and the squeezing operators, both
of which are widely used in quantum optics. We have
also described a general method based on the symme-
try group of the one-dimensional Schroddinger equation
in order to construct the wave functions. This procedure
later enables us to explore the different cases in detail and
to provide the explicit physical properties of each, some-
times given in closed form. As a consequence, we have
presented a general procedure for constructing the exact
wave functions in the interacting system, starting from a
well known-solution in the reduced case at zero external
field. The striking result showing that the final expres-
sions do not need to be of the separable-coordinate kind
allows us to construct exact wave functions for quantum
states confined in potential wells with moving walls and/or
harmonic fluctuating potentials within elastic boundaries.
The laws that govern the motion of the walls emerge as a
consequence of the boundary conditions of each particular
model describing the cavity.
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