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Abstract: In this paper we present two results. First, we derive the most general group of infinitesimal transformations
for the Schrödinger Equation of the general time-dependent Harmonic Oscillator in an electric field. The
infinitesimal generators and the commutation rules of this group are presented and the group structure is
identified. From here it is easy to construct a set of unitary operators that transform the general Hamil-
tonian to a much simpler form. The relationship between squeezing and dynamical symmetries is also
stressed. The second result concerns the application of these group transformations to obtain solutions
of the Schrödinger equation in a time-dependent potential. These solutions are believed to be useful for
describing particles confined in boxes with moving boundaries. The motion of the walls is indeed governed
by the time-dependent frequency function. The applications of these results to non-rigid quantum dots
and tunnelling through fluctuating barriers is also discussed, both in the presence and in the absence of a
time-dependent electric field. The differences and similarities between both cases are pointed out.
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1. Introduction.

The Fermi accelerator is a simple but clever physicalmodel [1] that as early as 1949 Fermi believed to beeffective for explaining the origin of cosmic rays. Lateron, Ulam and several other authors improved the origi-nal model to take into account other more sophisticatedfeatures not included in the original scheme [2, 3] and[4]. In its most simple form, the model considers a par-ticle moving freely between two rigid walls. One of thewalls remains at rest while the other oscillates with timeunder a not necessarily specified periodic law. This seem-ingly trivial ping-pong device has recently been appliedto other phenomena with a surprisingly degree of success.

Seba [5] used it as a model to explore chaos in quantummechanics. The authors of the present work have previ-ously reported [6, 7] a detailed study of the harmonic os-cillator with time-dependent parameters, also using spe-cific forms for this set of generalized variable frequencies.Other authors have elaborated more sophisticated appli-cations based on the above model [8, 9] to describe theo-retical models of Bose-Einstein condensation. The sameapproach has also been used in the characterization ofquantum states of charged or neutral particles trapped inPenning [10] and Paul traps [11, 12], as well as in the de-scription of the process of photon creation due to quantumfluctuations in cavities with moving walls [13] and in thecharacterization of metastable states in the presence oftunnelling with fluctuating barriers [14].
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The symmetry group of the quantum harmonic oscillator in an electric field

Fostered by all of these really interesting physical effects,our aim here is to present a systematic study and an ex-plicit exact construction of these new quantum states, ofinterest in systems in which time dependence plays a cen-tral role. The main tool used within the paper is the use ofthe maximal kinematic symmetry group of the generalizedharmonic oscillator. Since the price to pay for introducinga time-dependent electric field is almost negligible, wehave been able to consider such a case with almost noadditional formal effort. After a complete analysis of thegeneralized symmetry group, we use it in a practical formto construct part of the huge set of exact wave functionsthat arise as a consequence of the set of generators of thegroup. Of special interest are those in which the time-dependent electric field coupled to the oscillator chargeplays a dominant role.Let us begin with the physical system described by thefollowing Hamiltonian:
H(t) = β3(t) p22m + 12β2(t)ωo[p, x]+

+ 12mω2
oβ1(t)x2 − qxE(t), (1)

where {β3(t), β2(t) and β1(t)} are real functions of time, qis the oscillator charge, and E(t) is the external electricfield. Notice that we have rearranged the Hamiltonian insuch a way that all of these functions are dimensionless.Note also that one can easily achieve several limits bya judicious choice of the time-dependent functions: thefree particle with or without time-dependent mass, theharmonic oscillator in the absence of electric field, etc.Furthermore, the Hamiltonian (1) also includes the caseof a well with moving boundaries as it has been shown in[6] by the authors of the present work. These limits willalso be carefully examined for each class of wave functionobtained by the group theoretical method that we developin Sections 2 and 3.

The Schrödinger equation arising from the Hamiltonian(1) in coordinate representation has the form:
ih̄ψt = −β3 h̄22mψxx − ih̄β2ωo

(
xψx + 12ψ

)
+ (12mω2

oβ1x2 − qEx
)
ψ, (2)

where, as usual, ψ(x, t) represents the wave function inthe same representation. Before calculating the Symme-try Group of (2) in an appropiate way, we shall reducethe system to a more tractable form by using a unitarytransformation. After this transformation, the symmetriesand wave functions will be constructed in Section 3.
2. Reduction by unitary transforma-
tions
In this Section we shall follow the procedure described inReference [15]. The aim is to reduce the initial Hamilto-nian (1) to the form:

Ho(t) = ih̄Ẇ (t)W+(t) +W (t)H(t)W+(t)
= p22m + 12mΩ(t)2x2 (3)

while the state vectors of both Hamiltonians are relatedas usual:
| Ψ(t)〉 = W+(t) | Ψo(t)〉, (4)

where | Ψo(t)〉 is the state vector of the Hamiltonian Ho(t)and | Ψ(t)〉 is the state vector of the Hamiltonian H(t).Defining the effective frequency Ω2(t) of (3) as

Ω2(t) = ω2
o{β1(t)β3(t)− β22 (t)}+ ωo

{
β2(t) β̇3(t)

β3(t) − β̇2(t)} + β̈3(t)2β3(t) − 3β̇23 (t)4β23 (t) (5)
direct calculation shows that the W (t) operator appearing in (4) has the form:

W (t) = exp{− i2qEZ (t)− i q22mh̄
∫ t

0 {Eu(s)dEv (s)− Ev (s)dEu(s)}
}exp{i(f(t)p − mḟ(t)x)}

exp{ im2h̄ (ωoβ2(t)− β̇3(t)2β3(t) )x2}exp{ i4h̄ Log[β3(t)][p, x]+} (6)

with
f(t) = Z (t) + q

mh̄ (v(t)Eu(t)− u(t)Ev (t)), (7a) Eu(t) = ∫ t

0
√
β3(s)E(s)u(s)ds, (7b)
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Ev (t) = ∫ t

0
√
β3(s)E(s)v(s)ds (7c)

and {u(t), v(t)} is a set of two independent solutions of theclassical equations of motion corresponding to a harmonicoscillator of variable frequency Ω2(t):
ü(t) + Ω2(t)u(t) = 0, u(0) = 1, du(t)

dt |t=0 = u̇(0) = 0,(8a)
v̈(t)+Ω2(t)v(t) = 0, v(0) = 0, dv(t)dt |t=0 = v̇(0) = 1. (8b)

We shall use Z (t) = C1u(t) + C2v(t) to refer to an arbi-trary linear combination of the main solutions {u(t), v(t)}.For Ω2(t) real, one can consider with no loss of generality

that u(t) and v(t) are also real. Thus, Z (t) represents anyclassical solution of the equations of motion. To includethe time-dependent electric field in the unitary transfor-mation, we first define, in general:
Eκ = Eκ(t) = ∫ t

0
√
β3(s)E(s)κ(s)ds, (9)

where κ(t) will usually be one of the functions: {u(t), v(t)}.Following the method described in [15, 16], one can eas-ily generalize the W (t) operator to include the time-dependent electric field. It takes the final form:

W (t) = exp{− i2qEZ (t)− i q22mh̄
∫ t

0 {Eu(s)dEv (s)− Ev (s)dEu(s)}
}

· exp{α(t)a+ − α∗(t)a} exp{β(t)a+22 − β∗(t)a22
}exp{ih(t)2

[
a+a+ 12

]}
, (10)

where the α(t) appearing in the coherent state displacement operator is:
α(t) = −

√
h̄mωo2

(
f(t) + i

ωo
df(t)
dt

)
, (11)

f(t) = Z (t) + q
h̄m
(
v(t)Eu(t)− u(t)Ev (t)) (12)

and the h(t) and β(t) appearing in the squeezed states generator are [15, 17]:
h(t) = 2 arctan ωoβ2(t)− β̇3(t)2β3(t)

ωo(1 + β3(t)) , (13)
β(t) = arg tanh

√√√√√√
[
ωoβ2(t)− β̇3(t)2β3(t)

]2 + ω2
o[1− β3(t)]2[

ωoβ2(t)− β̇3(t)2β3(t)
]2 + ω2

o[1 + β3(t)]2 exp
−i arctan

 2ωo [ωoβ2(t)− β̇3(t)2β3(t)
]

ω2
o [β3(t)2 − 1] + [ωoβ2(t)− β̇3(t)2β3(t)

]2

 . (14)

Up to a global phase factor, the electric field only en-ters the coherent states displacement operator but not thesqueezing operator. The whole problem has thus been re-duced to one of a time-dependent Hamiltonian operator:

Ho(t) = 12m{p2 +m2Ω2(t)x2}, (15)

with variable frequency given by:
Ω2(t) = ω2

o(β1β3 − β22 ) + ωo

(
β2 β̇3
β3 − β̇2

)+ β̈32β3 −
3β̇234β23 ,(16)

with a well-defined unitary transformation given by (3),(4) and (6)
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3. The symmetry group
Here we shall follow the Olver formalism [18] to find vectorfields associated with the symmetries of the Schrödingerequation arising from the Hamiltonian (15). These will allbe of the form:

V̂ = ξ(x, t, ψ) ∂∂x + τ(x, t, ψ) ∂∂t + φ(x, t, ψ) ∂∂ψ , (17)

with a second prolongation:

pr(2)V̂ = V̂ + φx ∂
∂ψx

+ φt ∂
∂ψt

+ φxx ∂
∂ψxx

+ φxt ∂
∂ψxt

+ φtt ∂
∂ψtt

. (18)
Applying the formalism, we end up with a set of six vector fields:

V̂1 = u(t) ∂∂x + im
h̄ u̇(t)xψ ∂

∂ψ , (19a)
V̂2 = v(t) ∂∂x + im

h̄ v̇(t)xψ ∂
∂ψ , (19b)

V̂3 = u2(t) ∂∂t + u(t)u̇(t)x ∂∂x − 12{u(t)u̇(t) + im
h̄ {Ω2(t)u2(t)− u̇2(t)}x2}ψ ∂

∂ψ , (19c)
V̂4 = u(t)v(t) ∂∂t + 12 d{u(t)v(t)}

dt x ∂∂x −
{
d{u(t)v(t)}

dt + 2im
h̄ {Ω2(t)u(t)v(t)− u̇(t)v̇(t)}x2} ψ4 ∂

∂ψ , (19d)
V̂5 = v2(t) ∂∂t + v(t)v̇(t)x ∂∂x − 12

{
v(t)v̇(t) + im

h̄ {Ω2(t)v2(t)− v̇2(t)}x2}ψ ∂
∂ψ , (19e)

V̂6 = ψ ∂
∂ψ . (19f)

Since the only functions appearing in this set are Ω2(t)and {u(t), v(t)}, this shows that the symmetry group of thereduced Hamiltonian can be found simply by using thetime-dependent functions appearing in Ho(t) and the setof linearly independent solutions {u(t), v(t)} for the clas-sical equations of motion. It is now interesting to considerthe form of these generators when they act on the wavefunctions. The infinitesimal generators can be written interms of x and p operators as:
V̂1 = i

h̄ {u(t)p − mu̇(t)x}, (20a)
V̂2 = i

h̄ {v(t)p − mv̇(t)x}, (20b)
V̂3 = − i2mh̄{u2(t)p2 −mu(t)u̇(t){xp+ px}+m2u̇(t)2x2},(20c)

V̂4 = − i2mh̄
{
u(t)v(t)p2 − m2 d{u(t)v(t)}

dt {xp+ px}

+ m2u̇(t)v̇(t)x2} , (20d)
V̂5 = − i2mh̄{v2(t)p2 −mv(t)v̇(t){xp+ px}+m2v̇(t)2x2},(20e)

V̂6 = 1. (20f)The set of {v1, ....v6} has already been reported recentlyin [19] and generalizes those described in [20] and [21] forthe free particle case and the harmonic oscillator with con-stant frequency. The generators {v1, ....v6} can be reducedto these particular cases: (Ω2(t) = 0 and Ω2(t) = ω2
o).They are antihermitian, although it is possible to improvethe situation by constructing the function σ (t):

σ (t) = u(t) + iΩov(t), (21)
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where Ωo can be identified as the value Ωo = Ω(t = 0).We now define the operators:
A = A(t) = 1√2mh̄Ωo

{σ (t)p − mσ̇ (t)x}, (22)
A+ = A+(t) = 1√2mh̄Ωo

{σ ∗(t)p − mσ̇ ∗(t)x}. (23)
It is easy to check that if {u(t), v(t)} is a set of normalizedlinearly independent solutions of the classical equation ofmotion, we have:

[A(t), A+(t)] = 1, (24)
d
dt A(t) = ∂

∂t A(t) + 1
ih̄ [A(t), Ho(t)] = 0, (25)

in such a way that the pair A(t) and A+(t) are time-dependent invariants for Ho(t). Let us construct a time-dependent realization of the above algebra:
V̂1 = i

√
mΩ02h̄ {A(t) + A+(t)}, (26a)

V̂2 = √ m2h̄Ω0 {A(t)− A+(t)}, (26b)
K̂+ = K̂+(t) = 12

{
iΩ0 V̂3 − iΩ0V̂5 + 2V̂4

} = 12A+(t)A+(t),(26c)

K̂− = K̂−(t) = 12
{
iΩ0 V̂3 − iΩ0V̂5 − 2V̂4

} = 12A(t)A(t),(26d)
K̂0 = K̂0(t) = i2

{ 1Ω0 V̂3 + Ω0V̂5
} = 12

(
A(t)+A(t) + 12

)
.(26e)These five generators fulfill the following set of commuta-tion rules:

[K̂0, K̂±] = ±K̂±; [K̂+, K̂−] = −2K̂0, (27a)

[V̂1, K̂+] = −12{V̂1 + iΩ0V̂2}; [V̂1, K̂−] = 12{V̂1 − iΩ0V̂2},(27b)
[V̂2, K̂+] = 12{i V̂1Ω0 −V̂2}; [V̂2, K̂−] = 12{i V̂1Ω0 + V̂2}, (27c)

[V̂1, K̂0] = iΩ02 V̂2; [V̂1, V̂2] = −imh̄ ; [V̂2, K̂0] = − i2Ω0 V̂1.(27d)This is the Lie Algebra of SU(1, 1) ⊗ H3, where H3 rep-resents the Heisenberg Algebra. The construction onlyholds for a vanishing electric field. It is not hard to ex-tend the results to the case of non-vanishing electric fields,both constant and time-dependent. Let us now define theoperators:

AE (t) = √
β3(t)√2mh̄Ωo

{
σ (t)p+m σ (t)

β3(t)
{
ωoβ2(t)− β̇3(t)2β3(t) − σ̇ (t)

σ (t)
}
x − qEu(t) + iΩoEv (t)√

β3(t)
}
, (28)

A+
E (t) = √

β3(t)√2mh̄Ωo

{
σ ∗(t)p+mσ

∗(t)
β3(t)

{
ωoβ2(t)− β̇3(t)2β3(t) − σ̇ ∗(t)

σ ∗(t)
}
x − qEu(t)− iΩoEv (t)√

β3(t)
}
. (29)

If {u(t), v(t)} is a set of normalized linearly independentsolutions of the classical equation of motion, the operators
AE (t) and A+

E (t) also fulfill
[AE (t), A+

E (t)] = 1, (30)
d
dt AE (t) = ∂

∂t AE (t) + 1
ih̄ [AE (t), H(t)] = 0. (31)

The operators built only with AE (t) and A+
E (t) are invari-ant. The operator 12 (A+

E (t)AE (t)+ 12 ) is also hermitian, andit belongs to the class of Lewis-Riesenfeld invariants for

system (1). For a more detailed discussion of this type ofoperator, see [22] and [23] .
4. The wave functions
The unitary transformation W (t) given by (9) can be usedto construct the wave functions:

| Ψ(t)〉 = W+(t) | Ψo(t)〉, (32)
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or in terms of the coordinate representation:

Ψ(x, t) = 〈x | Ψ(t)〉 = 〈x | W+(t) | Ψo(t)〉 = W+(t)Ψo(x, t). (33)
For an arbitrary function Ξ(x, t), the following identities hold:

exp{α(t) ∂∂x
}Ξ(x, t) = Ξ(x + α(t), t), (34)

exp{α(t)(2x ∂∂x + 1)}Ξ(x, t) = eα(t)Ξ(e2α(t)x, t). (35)
Making use of these, we finally find:

ΨE (x, t) = exp{− i2 q2
mh̄

∫ t0 [Ev (s)dEu(s)− Eu(s)dEv (s)]}
β3(t) 14 exp{ i2 qh̄EZ (t)− i4 mh̄ ∂

∂t

[
Z (t)− q

mg(t)]2} (36)
· exp{imh̄ x√

β3(t)
{
Ż (t)− q

mġ(t)− 12
[
ωoβ2(t)− β̇3(t)2β3(t)

]
x√
β3(t)

}}Ξ{ x√
β3(t) − Z (t) + q

mg(t), t} ,
g(t) = u(t)Ev (t)− v(t)Eu(t), (37)

with Ξ(x, t) any wave function of the harmonic oscilla-tor with variable frequency. The construction of the wavefunctions of the generalized oscillator in the presence of
a time-varying electric field requires the solution of thefollowing second-order differential equation.
ih̄ ∂∂tΞ(y, t) = − h̄22m ∂2

∂y2 Ξ(y, t) + 12mΩ(t)2y2Ξ(y, t). (38)
To this end, we make use of the symmetries previouslyfound in (17) [18]. After direct substitution, it is not hard toconclude that all the wave functions must have the generalform:
Ξ(y, t) = exp {A(t)y2 + B(t)y+ C (t)}W (D(t)y+M(t)).(39)

Now, W (z) is the unknown function. Let us now imposethat (39) should be a solution of the Schrödinger equation(38) and that Wo should be the Wronskian of the classicalequation of motion. Defining:
Z (t) = C1u(t) + C2v(t), (40a)
G(t) = Z (t)2 + C 25 v(t)2, (40b)

Y (t) = C3u(t) + C4v(t). (40c)
We have Wo = C1C4 − C2C3. We find the following non-trivial cases:

• For C1C5 6= 0, there exists a solution for W (z) fulfilling the ordinary second-order differential equation: Ẅ (z) +(− z24 + ν + 12 )W (z) = 0. The solution takes the form:
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z(y, t) = √2C1C5m
h̄

y+ Y (t)√
G(t) , (41)

Ξ1(y, t) = 1
G(t) 14 exp{i(ν + 12

)arctan [C5C3Z (t)− C1Y (t)
WoZ (t)

]}
· exp{ im4h̄

{
C1C5(Wo + C3C5)Y (t)− (W 2

o + C 23C 25 )Z (t)}2
C1C5W 2

oG(t)
}

· exp{ imh̄
{
Ġ(t)
G(t) y24 −√G(t) ∂∂t

{
Y (t)√
G(t)

}
y
}}
{λ+Dν {z(y, t)}+ λ−Dν {−z(y, t)}} , (42)

where Dν(y) and Dν(−y) are the Weber functions. The Wronskian Wo can take an arbitrary constant value. Asis well known, when ν = n is an integer, the solutions can be expressed in terms of Hermite polynomials:
Ξ2(y, t) = λ

G(t) 14 exp{i(n+ 12
)arctan [C5C3Z (t)− C1Y (t)

WoZ (t)
]}

· exp{i m4h̄
{
C1C5(Wo + C3C5)Y (t)− (W 2

o + C 23C 25 )Z (t)}2 + 2iC 21C 25W 2
oY (t)2

C1C5W 2
oG(t)

}

· exp{imh̄
{
Ġ(t) + 2iC1C5

G(t) y24 −
{√

G(t) ∂∂t
{

Y (t)√
G(t)

}
− iC1C5 Y (t)

G(t)
}
y
}}

Hn

{
z(y, t)√2

}
. (43)

• If Wo = 1, there exists a solution for W (z) fulfilling Ẅ (z)− zW (z) = 0. The solutions can be expressed in termsof Airy functions:
z(y, t) = y

Y (t) − h̄24m2 Z (t)2
Y (t)2 ,

Ξ3(y, t) = 1
Y (t) 12 exp{i m2h̄ Ẏ (t)

Y (t)y2 + i h̄2m Z (t)
Y (t)2 y − i h̄312m3 Z (t)3

Y (t)3
}
{λ1Ai(z(y, t)) + λ2Bi(z(y, t))} . (44)

• If Wo = 1, there also exists a solution in which Ẅ (z) = 0. These solutions take the form:
Ξ4(y, t) = 1

Y (t) 12 exp{i m2h̄ Ẏ (t)
Y (t)y2 − i y

Y (t) + i h̄2m Z (t)
Y (t)

}{
λ1
(

y
Y (t) − h̄

m
Z (t)
Y (t)

) + λ2
}
. (45)

The dimensions of the constants are: [C1] = TL−1 ; [C2] = L−1 ; [C3] = L ; [C4] = LT−1 ; [C5] = L−1 and [Wo] = 1and they may be real or complex depending on the properties of the solutions.One can always return to the original system by back-transforming these solutions in the way described above.We shall write the back-transformed solution only for the sake of completeness:
ΨE (x, t) = 1

β3(t) 14 exp{− i2 q2
mh̄

{∫ t

0 [Ev (s)dEu(s)− Eu(s)dEv (s)] + g(t)ġ(t)}}
· exp{−iqh̄ ġ(t) x√

β3(t) − i m2h̄
{
ωoβ2(t)− β̇3(t)2β3(t)

}
x2
β3(t)

}Ξ{ x√
β3(t) + q

mg(t), t} , (46)
g(t) = u(t)Ev (t)− v(t)Eu(t), (47)

with Ξ {x, t} any of the functions just found. Let us briefly consider certain particular cases of interest.
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5. Particular cases of the wave functions
a) The free particle.In this case, obviously β3(t) = 1, β2(t) = 0, β1(t) = 0 and E(t) = 0. Also, and trivially, u(t) = 1, v(t) = t. Theinfinitesimal generators have been already described in [20].
• An initial judicious choice of the free parameters C1, C2, C3 and C4, taking into account their physical dimensions,leads us to the explicit solution:

Ψ(x, t) = 1√
lo + vot

exp{i m2h̄ vox2
lo + vot

+ i ph̄
lox

lo + vot
− i lop

22h̄m t
lo + vot

}(
λ1mvox + lop

lo + vot
+ λ2

)
, (48)

which reduces to the well-known plane wave solution for vo = 0.
• With another set of free constants, we also find the normalized wave function:

Ψα (x, t) = (
mΩo

πh̄

) 14 exp { 14 (α − α∗)2 − α2}
√1 + iΩot

exp
−

(√
mΩo2h̄ x − iα

)2
1 + iΩot

 , (49)

where Ω0 has dimensions of frequency and where we have chosen C4
C3 = IΩo. Below, we list the physical properties ofthis latter solution:

〈x〉 = √ h̄2mΩo
{i(α − α∗) + (α + α∗)Ωot} , 〈∆x〉 = √ h̄2mΩo

√1 + Ω2
ot2, (50a)

〈p〉 = √mh̄Ωo2 (α + α∗), 〈∆p〉 = √mh̄Ωo2 , (50b)
〈E〉 = 14 {1 + (α + α∗)2} h̄Ωo, 〈∆E〉 = 12 h̄Ωo

√12 + (α + α∗)2. (50c)
This represents a Gaussian state that moves at constant velocity and with a probability density given by:

| Ψα (x, t) |2=
√

mΩo
πh̄√1 + Ω2

ot2 exp
−mΩo

h̄

{
x −

√
h̄2mΩo {i(α − α∗) + (α + α∗)Ωot}

}2
1 + Ω2

ot2
 . (51)

This wave function represents a coherent state: an eigenstate of A(t), with α the coherency parameter. It represents astatistical distribution of states with momentum p and a stationary momentum wavefunction given by:
Φα (p, t) = 1(πmh̄Ωo) 14 exp{14 (α − α∗)2}exp{−( p√2mh̄Ωo

− α)2} . (52)
• There also exist solutions of the free particle that use Airy functions [24]:

z(t) = l1 + v1t
lo + vot

, v1lo − l1vo = h̄
m , (53)

Ψ(x, t) = 1√
lo + vot

exp{i m2h̄ vox2
lo + vot

+ i2 x
lo + vot

z(t)− i12z(t)3
}

·
{
λ1Ai

{
x

lo + vot
− 14z(t)2

}+ λ2Bi
{

x
lo + vot

− 14z(t)2
}}

. (54)
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For λ2 = 0, the wave function can be normalized on the positive real semiaxis.
• Finally, we shall construct normalizable states along the real axis for the free particle using the Weber functions orthe Hermite polynomials for the integer index of the Weber functions. We now define C5

C1 = Ωo and C2
C1 = Ω1, bothwith dimensions of frequency; also, C3 = 0 and C4 = −Po

m , with dimensions of velocity. We obtain the following wavefunction:
Ψn(x, t) = (mΩo

πh̄ ) 14 exp
−i(n+ 12 ) arctan{ Ωot1+Ω1t

}exp{− P2
o2mh̄ ΩoΩ2o+Ω21

}
√2nn!(1 + 2Ω1t + (Ω2

o + Ω21)t2) 14

· exp{i m2h̄ Ω1 + iΩo1 + (Ω1 + iΩo)t
{
x + Po

m(Ω1 + iΩo)
}2}

Hn

{√
mΩo

h̄
x − Po

m t√1 + 2Ω1t + (Ω2
o + Ω21)t2

}
. (55)

These latter solutions have also been used to construct and characterize the in-phase entanglement of two particles.Any state of the free particle could in principle be described by an appropiate superposition of individual exact states.The ones now described are states with average position, momenta and energy, given by:
〈x〉 = Po

m t, ∆x = √ h̄
mΩo

(
n+ 12

) (1 + 2Ω1t + (Ω2
o + Ω21)t2), (56a)

〈p〉 = Po, ∆p = √mh̄Ω2
o + Ω21Ωo

(
n+ 12

)
, (56b)

〈E〉 = P2
o2m + h̄Ω2

o + Ω212Ωo

(
n+ 12

)
, ∆E = h̄Ω2

o + Ω212Ωo

√ 2ΩoΩ2
o + Ω21

P2
o

h̄m (2n+ 1) + 12 (n2 + n+ 1). (56c)
These expressions show that we are dealing with an equivalent system whose average energy equals that of a free particleplus a harmonic oscillator of constant frequency Ω2

o+Ω212Ωo . Note, however, that this is a dispersive wave in position, butthat momentum and energy remain constant. This solution is physically equivalent to the representation of a collectionof states with momentum distribution given by:
Φn(p, t) =

{
− Ωo

πmh̄

} 14 exp{−i(n+ 12 ) arctan ΩoΩ1
}

(Ω2
o + Ω21) 14√2nn! exp{i Ω1P2

o2mh̄(Ω21 + Ω2
o)
}

· exp{−i (p − Po)22mh̄(Ω1 + iΩo)
}

Hn

{√Ωo

mh̄
p − Po√Ω2

o + Ω21
}
. (57)

An analysis of the probability density of this wavefunction shows that we are really describing a vanishing state in theremote past and in the far future, while at the present time it is described by a Gaussian distribution that grows fromzero and vanishes at longer times.
b) The well of moving walls.By setting some infinite moving boudaries for the free particle one can obtain solutions for an infinite well with the wallsmoving under some time-dependent law. The general solution (39) allows the construction of such wave configurations.Indeed, the boundary conditions leads to:∫ b(t)

a(t) | Ψ(x, t) |2 dx < ∞, Ψ(a(t), t) = Ψ(b(t), t) = 0, (58)
where a(t) and b(t) are the bounded limits of the moving walls. We have found the following possible solutions underthese conditions:

Ψn(x, t) = √ 2(vb − va)(t − to) exp{ im2h̄(t − to)
(
x2 + n2π2h̄2

m2(vb − va)2
)}sin{nπ x − va(t − to)(vb − va)(t − to)

} (59)
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Here, a(t) = va(t − to) and b(t) = vb(t − to). Therefore, the walls move with constant velocity and the width is atime-dependent function given by the law L(t) = (vb−va)(t − to). The case va = 0 is the particular one discussed in [25].Other solutions constructed from (39) with similar boundary conditions are:
Ψ(x, t) = λ√

L(t) exp{− ih̄324m3 k3
n(vb − va)3L(t)

{
k3
n

L(t)2 + 12m2
h̄2 va(vb − va)− 3 k3

n(b − a)2
}} (60)

· exp
 im2h̄ vb − vaL(t)

{
x − vba − vab

vb − va
+ h̄22m2 k3

n(vb − va)2
( 1
L(t) − 1

b − a

)}2{3−1/6Ai {y(x, t)} − 3−2/3Bi {y(x, t)}} ,
y(x, t) = kn

L(t)
{
a+ vat −

h̄24m2(b − a)2 k3
nt2
L(t) − x

}
. (61)

The last solution represents the state of a particle in an infinite square well with moving boundaries of the form:
a(t) = a+ vat −

h̄24m2(b − a)2 k3
nt2
L(t) , (62a)

b(t) = b+ vbt −
h̄24m2(b − a)2 k3

nt2
L(t) , (62b)

L(t) = b(t)− a(t) = b − a+ (vb − va)t. (62c)
Quantization of momenta forces the kn to be one of the roots of the transcendental equation:

√3Ai[−kn]− Bi[−kn] = 0. (63)
This latter condition allows us to calculate the wavefunction and also the limits of the boundary, as stated above. Forexample, here if va = vb = v , the function takes the simple form:
Ψ(x, t) = λ exp

2i3 m3
h̄3 (b − a)3

k3
n

{
v − h̄22m2 k3

n(b − a)3 t
}3exp{ imh̄

{
v − h̄22m2 k3

n(b − a)3 t
}{

x − a − m2
h̄2 (b − a)3

k3
n

v2}}
·
{3−1/6Ai {y(x, t)} − 3−2/3Bi {y(x, t)}} , (64)

y(x, t) = kn(b − a)
{
a+ vt − h̄24m2 k3

n(b − a)3 t2 − x
}
, (65)

which represents a well of constant width but with walls accelerating quadratically in time. The solutions for a movingwall with constant velocity were already described by [25]. The accelerating moving wall provided by the expressions(61) and (61) are a new and interesting result which can be checked by inserting these expressions in the Schrödingerequation.Let us now work with the solutions of the free particle containing Hermite polynomials. After some algebraic calculations,we are able to set boundary conditions of the kind described above. The solutions and boundary laws now take theform:
Ψn(x, t) = (

mΩo

h̄

) 14 exp{− m2h̄ ΩoΩ2o+Ω21 v2}√∫ β
α e−y

2H2
n(y)dy

exp{−i (n+ 12) arctan{Ω1Ωo + Ω2
o+Ω21Ωo t

}}
(1 + 2Ω1t + (Ω2

o + Ω21)t2) 14

· exp{ im2h̄ Ω1 + iΩo(1 + (Ω1 + iΩo)t)
{
x − xo + vΩ1 + iΩo

}2}
Hn

{√
mΩo

h̄
(x − xo − vt)√1 + 2Ω1t + (Ω2

o + Ω21)t2
}
, (66)
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which is normalized between limits, and changes with time in the form:
a(t) = α

√
h̄

mΩo

√1 + 2Ω1t + (Ω2
o + Ω21)t2 + xo + vt, (67)

b(t) = β

√
h̄

mΩo

√1 + 2Ω1t + (Ω2
o + Ω21)t2 + xo + vt, (68)

with α and β two arbitrary roots of the Hermite polynomial Hn. Restricting ourselves to the states with odd index(2n+ 1), we obtain:
Ψ2n+1(x, t) = (

mΩo

h̄

) 14 exp{−i(2n+ 32 ) arctan{Ω1Ωo + Ω2
o+Ω21Ωo t

} + i m2h̄ Ω1+iΩo1+(Ω1+iΩo)t x2}
(1 + 2Ω1t + (Ω2

o + Ω21)t2) 14√∫ β0 e−y2H22n+1(y)dy
· H2n+1

{√
mΩo

h̄
x√1 + 2Ω1t + (Ω2

o + Ω21)t2
}
. (69)

These are normalized states of the free particle in a square well with width starting at a = 0 and variable length
L(t) = β

√
h̄

mΩo√1 + 2Ω1t + (Ω2
o + Ω21)t2, where β is any root of the polynomial H2n+1. Also the expression (66) is a newand interesting result which can be checked by inserting this expression in the Schrödinger equation.

c) The harmonic oscillator with variable frequency.In this case, obviously β3(t) = 1, β2(t) = 0, β1(t) = Ω2(t)
ω2o(t) and E(t) = 0. Also, in the case of an oscillator with constantfrequency ωo the characteristic functions are u(t) = cos(ωot) and v(t) = 1

ωo sin(ωot). The infinitesimal generators havealready been described in [21]. Some of the solutions have already been described in [6]. We shall proceed by discussingthe most general case with variable frequency Ω2(t). The first step is to find a pair of normalized solutions: {u(t), v(t)}of the classical equations of motion. As we did in the free particle case, one can construct the wavefuntions simply withthe help of {u(t), v(t)} and the general expression described in Section 4. For the coherent class of solutions, we nowobtain:
Ψα (x, t) = (

mΩo

πh̄

)1/4 exp {−=m[α ]2}√
u(t) + iΩov(t) exp{− iΩoα2v(t)

u(t) + iΩov(t)
}

· exp{ im2h̄ u̇(t) + iΩov̇(t)
u(t) + iΩov(t)x2 +√2mΩo

h̄
iα

u(t) + iΩov(t)x
} (70)

and for those containing Airy functions, we obtain:
Ψ(x, t) = 1√

l1u(t) + v1v(t) exp{i l2u(t) + v2v(t)
l1u(t) + v1v(t)

{23 (l2u(t) + v2v(t))2(l1u(t) + v1v(t))2 − k
}}

· exp{ im2h̄ l1u̇(t) + v1v̇(t)
l1u(t) + v1v(t)x2 − i l2u(t) + v2v(t)(l1u(t) + v1v(t))2 x

}
{λ1Ai[y(x, t)] + λ2Bi[y(x, t)]} , (71)

y(x, t) = x
l1u(t) + v1v(t) − (l2u(t) + v2v(t))2(l1u(t) + v1v(t))2 + k. (72)

One can also construct wavefunctions for the Weber case, but we find it more useful to restrict ourselves to the case inwhich the Weber functions become Hermite polynomials owing to its broader physical applications. After some algebraiccalculations we obtain:
Ψn(x, t) = (

mΩo

πh̄

) 14 exp{−i(n+ 12 ) arctan B(t)
A(t)
}exp{− m2h̄ (Ωox2

o + i (vo−(Ω1+iΩo)xo)2Ωo B(t)
A(t)+iB(t) )}

√2nn! (A(t)2 + B(t)2) 14
· exp{i m2h̄ Ȧ(t) + iḂ(t)

A(t) + iB(t)x2 + imh̄
vo − (Ω1 + iΩo)xo
A(t) + iB(t) x

}
Hn

{√
mΩo

h̄
x − F (t)√
A(t)2 + B(t)2

}
, (73)
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where:
F (t) = xou(t) + vov(t), (74a)
A(t) = u(t) + Ω1v(t), (74b)

B(t) = Ωov(t). (74c)
The integration constants are defined as C3 = −xo (an arbitrary length), C4 = −vo (an arbitrary velocity) and arbitraryfrequencies given by C5

C1 = Ωo and C2
C1 = Ω1. Their position, momentum and energy averages are explicitly given by theexpressions:

〈x〉 = xou(t) + vov(t), ∆x = √ h̄
mΩo

(
n+ 12

) (A(t)2 + B(t)2), (75a)
〈p〉 = m(xou̇(t) + vov̇(t)), ∆p = √mh̄Ωo

(
n+ 12

) (Ȧ(t)2 + Ḃ(t)2), (75b)
〈E〉 = 〈p〉22m + 12m〈x〉2Ω(t)2 + h̄2Ωo

(
n+ 12

){(A(t)2 + B(t)2)Ω(t)2 + Ȧ(t)2 + Ḃ(t)2} , (75c)

∆E = h̄2Ωo

{12 (1 + n+ n2) {{(A(t)2 + B(t)2)Ω(t)2 + (Ȧ(t)2 + Ḃ(t)2)}2
− 4Ω2

oΩ(t)2}
+4mΩo

h̄ (1 + 2n) {(A(t)2 + B(t)2)F (t)2Ω(t)4 + 2Ω(t)2(A(t)Ȧ(t) + B(t)Ḃ(t))F (t)Ḟ (t) + (Ȧ(t)2 + Ḃ(t)2)Ḟ (t)2}} 12
. (75d)

These states are a generalization of those described in [6]. Because the solutions do not admit separation of variables,they can be used to construct infinite quantum wells containing a quadratic potential by setting the boundary conditionsat the frontier of the well. In this case the momentum distribution is:
Fn(p, t) = 1√2πh̄

∫ ∞
−∞

exp{−iph̄ (x − pt2m )}Ψn(x, t)dx = (76)
= (

− Ωo
πmh̄

) 14 exp{−i(n+ 12 ) arctan Ḃ(t)
Ȧ(t)
}

√2nn! (Ȧ(t)2 + Ḃ(t)2) 14 exp{− m2h̄
(Ωox2

o + i (vo − (Ω1 − iΩo)xo)2Ωo

B(t)− tḂ(t)
A(t) + iB(t)− t(Ȧ(t) + iḂ(t))

)}

· exp{ i2mh̄
{
t − A(t) + iB(t)

Ȧ(t) + iḂ(t)
}{

p − m(vo − (Ω1 − iΩo)xo)
A(t) + iB(t)− t(Ȧ(t) + iḂ(t))

}2}
Hn


√Ωo

mh̄
p − mḞ (t)√
Ȧ(t)2 + Ḃ(t)2


and the energy distribution takes the form:
Cn
k (ω, t) = ∫ ∞

−∞
φ∗k (x, t)Ψn(x, t)dx = (ωΩo) 14√n!k!2 n+k−12

(−1) n+k2 exp {i(k + 12 )ωt}√
ωC (t)− iĊ (t) (77)

· exp{− m2h̄
(Ωox2

o + i (vo − (Ω1 + iΩo)xo)2Ωo

ωB(t)− iḂ(t)
ωC (t)− iĊ (t)

)}{
ωC ∗(t)− iĊ ∗(t)
ωC (t)− iĊ (t)

} n2 {ωC (t) + iĊ (t)
ωC (t)− iĊ (t)

} k2

·
min[n,k ]∑
j=0

(−1) n+j2
j!(n − j)!(k − j)!

{ 16ωΩo(ωC (t) + iĊ (t))(ωC ∗(t)− iĊ ∗(t))
} j2

· Hn−j


√Ωo

mh̄
mω〈x〉 − i〈p〉√(ωC (t)− iĊ (t))(ωC ∗(t)− iĊ ∗(t))

Hk−j


√
mω
h̄

vo − (Ω1 + iΩo)xo√(ωC (t) + iĊ (t))(ωC (t)− iĊ (t))
 ,
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where C (t) = A(t) + iB(t). The particular case of constant frequency Ω(t) = Ωo is obtained with the choice Ω1 = 0,
x0 = 0, v0 = 0, and the pair of functions u(t) = cos(Ωot) and v(t) = 1Ωo sin(Ωot). For this well-known situation, inexpression (77) one can carry out the summation exactly, which finally yields:

Cn
k (ω, t) = (ωΩo) 14

√
ω+ Ωo

√2k!√
n! exp{i(k + 12

)
ωt − i

(
n+ 12

)Ωot
}

P
n−k2
n+k2
[2 √ωΩo

ω+ Ωo

]
, (78)

if n+ k is even, and zero otherwise. Indeed, Pm
l [x] denotes the associated Legendre polynomial:

Pm
l [x] = (−1)m (1− x2) m22ll! dm+l

dxm+l (x2 − 1)l. (79)
It could be suggested that an arbitrary state with n modes in the typical frequency Ωo oscillator can also be viewed asa superposition of states with k modes of another oscillator with arbitrary variable frequency ω. The statistical weightof each of these states in the former n-state would be | Cn

k (ω, t) |2.
d) The case with a non-vanishing time-dependent electric field.So far we have considered systems with vanishing electric field. Let us now introduce a time-dependent electric field
E(t) coupled to the oscillator. Using the results of Section 2, the wavefunctions of the system with the electric field takethe general form:

ΨE (x, t) = exp{− iq22mh̄
{∫ t

0 g(s)E(s)ds+ g(t)ġ(t)}}exp{−iqh̄ ġ(t)x}Ψ{x + q
mg(t), t} , (80)

g(t) = u(t)Ev (t)− v(t)Eu(t), (81)
with Eu(t) and Ev (t) as in (9) and Ψ(y, t) any of the wavefunctions already analyzed in the previous Sections in theabsence of an electric field. The mean values are now:

〈x〉E = 〈x〉E=0 − q
m {u(t)Ev (t)− v(t)Eu(t)} , ∆xE = ∆xE=0, (82a)

〈p〉E = 〈p〉E=0 − q{u̇(t)Ev (t)− v̇(t)Eu(t)} , ∆pE = ∆pE=0. (82b)
The momentum distribution can easily be related to that of the primitive (non-field) state. It now takes the form:

ΦE (p, t) = exp{ iq2mh̄ {2p+ q(u̇(t)Ev (t)− v̇(t)Eu(t))} {Ev (t)(u(t)− tu̇(t))− Eu(t)(v(t)− tv̇(t))}}
· exp{− iq22mh̄

∫ t

0 E(s)(u(s)Ev (s)− v(s)Eu(s))ds}ΦE=0 {p+ q[u̇(t)Ev (t)− v̇(t)Eu(t)], t} . (83)
The photon distribution changes according to the initial wavefunction, Ψ(y, t), chosen state. This is why it must becalculated in each case for this primitive wavefunction.
6. Conclusions and final remarks

Time-dependent harmonic oscillators and cavities withmoving walls are of paramount importance for describingthe physics of a few particles interacting with lasers inthe nanoscale world. This has been shown to be of greatimportance in the study of tunnelling in the presence of

fluctuating barriers [26]. Other examples of this are thestudy of quantum cascade lasers [27] and the descriptionof quantum walls deformed by electrostatic potentials oreven due to the plasticity effects that solids exhibit atsmall scale when confronted with higher-intensity fieldsof magnetic origin [28]. All of these effects are part of agrowing branch of physics with excellent prospects in re-
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search ranging from pure quantum mechanics to industrialapplications. The present paper, although originally quitemathematical, attempts to present a systematic study ofthe one-dimensional Schroödinger equation subjected totime-dependent harmonic potentials, with or without time-varying electric fields. First, a systematic study of thesymmetry group for the harmonic oscillator with both time-dependent frequency and electric field is presented in or-der to classify the solutions later on. It is interestingto note that from the beginning this symmetry group ex-hibits an important set of features such as the coherent-state representation and the squeezing operators, bothof which are widely used in quantum optics. We havealso described a general method based on the symme-try group of the one-dimensional Schroödinger equationin order to construct the wave functions. This procedurelater enables us to explore the different cases in detail andto provide the explicit physical properties of each, some-times given in closed form. As a consequence, we havepresented a general procedure for constructing the exactwave functions in the interacting system, starting from awell known-solution in the reduced case at zero externalfield. The striking result showing that the final expres-sions do not need to be of the separable-coordinate kindallows us to construct exact wave functions for quantumstates confined in potential wells with moving walls and/orharmonic fluctuating potentials within elastic boundaries.The laws that govern the motion of the walls emerge as aconsequence of the boundary conditions of each particularmodel describing the cavity.
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