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RECIPROCAL TRANSFORMATIONS FOR A SPECTRAL PROBLEM

IN 2+1 DIMENSIONS

P. G. Estévez∗

We present two reciprocal transformations for a spectral problem in 2+1 dimensions. Reductions of the

transformed equations to 1+1 dimensions include the Degasperis–Procesi and Vakhnenko–Parkes equa-

tions.
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1. Introduction

In [1]–[3], we considered the application of the singular manifold method to equations in 2+1 dimensions
of the form (

Hx1x1x2 + 3Hx2Hx1 + n0

H2
x1x2

Hx2

)
x1

= Hx2x3 . (1.1)

We studied the cases n0 = 0 and n0 = −3/4 of (1.1) in [1] and [2] and derived their Lax pair using the
singular manifold method [4]. Based on the results in those papers, we propose a spectral problem of the
form

φx1x1x1 − φx3 + 3Hx1φx1 + b1Hx1x1x1φ = 0,

φx1x2 + Hx2φ + b2
Hx1x2

Hx2

φx2 = 0.

It is easy to verify that the compatibility condition for this spectral problem implies the conditions on the
coefficients

b1 + 3b2 = 0, (b2 + 1)(2b2 + 1) = 0.

These conditions can be rewritten as

b2 =
k − 5

6
, b1 = −k − 5

2
, (1.2)

where
(k + 1)(k − 2) = 0 =⇒ k2 = k + 2. (1.3)

We note that these values of k correspond precisely to the cases analyzed in [1], [2]. Therefore, the spectral
problem is

φx1x1x1 − φx3 + 3Hx1φx1 −
k − 5

2
Hx1x1φ = 0,

φx1x2 + Hx2φ +
k − 5

6
Hx1x2

Hx2

φx2 = 0,

(1.4)
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and the (2+1)-dimensional equation arising from this spectral problem can be written as

Hx1x1x2 + 3Hx2Hx1 −
k + 1

4
H2

x1x2

Hx2

= Ω,

Ωx1 = Hx2x3 .

(1.5)

As proved in [1], [2], the singular manifold method, which is based on the Painlevé property [4], is an
excellent instrument for deriving the Lax pair of many equations. Unfortunately, the Painlevé property
depends strongly on the variables in which the equation is written. Nevertheless, we can sometimes identify
nontrivial transformations that transform an equation into a form in which the Painlevé methods work.
For instance, in [5], we applied a reciprocal transformation [6]–[9] to a (2+1)-dimensional Camassa–Holm
hierarchy that allowed transforming it into a system of equations with which the singular manifold method
can be successfully used [10].

Our main aim here is to identify some reciprocal transformations for (1.5). We prove that the reciprocal
transformations that we construct transform (1.5) to a system that generalizes the Vakhnenko [11] and/or
Degasperis–Procesi [7] equations to 2+1 dimensions. The spectral problem for these equations can be easily
derived from the reduction of the transformed (1.4) to 1+1 dimensions.

A connection between the Degasperis–Procesi and Vakhnenko–Parkes equations was shown in [12], [13].
We prove that both equations arise as 1+1 reductions of reciprocal transformations of (1.5).

2. First reciprocal transformation

We construct a reciprocal transformation of the form

dx1 = α(x, t, T )[dx − β(x, t, T ) dt − ε(x, t, T ) dT ],

x2 = t, x3 = T,
(2.1)

which means that
∂

∂x1
=

1
α

∂

∂x
,

∂

∂x2
=

∂

∂t
+ β

∂

∂x
,

∂

∂x3
=

∂

∂T
+ ε

∂

∂x
, (2.2)

and the cross derivatives of (2.1) obviously imply that

αt + (αβ)x = 0, αT + (αε)x = 0, βT − εt + εβx − βεx = 0. (2.3)

If we select the transformation in the form

Hx2(x1, x2, x3) = [α(x, t, T )]k, (2.4)

where k satisfies (1.3), then we easily obtain

Hx1(x1, x2, x3) =
1
3

[
Ω
αk

− k
αxx

α3
+ (2k − 1)

(
αx

α2

)2]
(2.5)

from (1.5) and
Ωx = −kα(k+1)εx (2.6)

from (1.5), (2.3), and (2.4). Furthermore, the compatibility condition Hx2x1 = Hx1x2 between (2.4) and (2.5)
yields

Ωt = −βΩx − kΩβx + αk−2

[
−kβxxx + (k − 2)βxx

αx

α
+ 3kαkαx

]
. (2.7)
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Equations (2.3), (2.6), and (2.7) in fact constitute the transformation of system (1.5). Nevertheless, a more
convenient form arises if we set

A1 =
k + 1

3
, A2 =

2 − k

3
, (2.8)

M =
1
α3

. (2.9)

Integrability condition (1.3) can be written as

A1A2 = 0, A1 + A2 = 1. (2.10)

Using these definitions, we write (2.3), (2.6), and (2.7) as the system

A1

(
Ωt + βΩx + 2Ωβx + 2βxxx + 2

Mx

M2

)
M +

+ A2(Ωt + βΩx − Ωβx − Mβxxx − Mxβxx − Mx) = 0,

A1

(
Ωx + 2

εx

M

)
+ A2(Ωx − εx) = 0,

Mt = 3Mβx − βMx, MT = 3Mεx − εMx, βT − εt + εβx − βεx = 0.

(2.11)

The reciprocal transformation can be also applied to spectral problem (1.4), and after some direct
calculations, we obtain

ψxt = A1

[
−βψxx +

(
βxx − 1

M

)
ψ

]
+ A2[−βψxx − 2βxψx − (1 + βxx)ψ], (2.12)

ψT = A1[Mψxxx + (MΩ − ε)ψx] + A2[Mψxxx + 2Mxψxx + (Mxx + Ω − ε)ψx], (2.13)

where we set
Φ(x1, x2, x3) = α(2k−1)/3ψ(x, t, T ) (2.14)

for convenience.

2.1. Reduction independent of T . We reduce (2.11) by setting all the fields independent of T .
This obviously means that

ε = 0, Ω = a0, (2.15)

and the system reduces to

2MA1

(
βxx + a0β − 1

M

)
x

− A2[Mβxx + a0β + M ]x = 0,

Mt = 3Mβx − βMx.

(2.16)

The reduction of the Lax pair can be obtained by setting

ψT = λψ.

In this case, (2.13) reduces to the third-order spectral problem

A1

(
ψxxx + a0ψx − λ

M
ψ

)
+ A2

(
ψxxx + 2

Mx

M
ψxx +

1
M

(Mxx + a0)ψx − λ

M
ψ

)
= 0, (2.17)

and its compatibility with (2.12) yields

A1[λψt + ψxx + λβψx + (a0 − λβx)ψ] +

+ A2

[
λψt + Mψxx + (λβ + Mx)ψx + (a0 + λβx)ψ

]
= 0. (2.18)
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2.1.1. Degasperis–Procesi equation. For the case A1 = 1 and A2 = 0, we can integrate (2.16) as

βxx + a0β =
1
M

+ q0,

(βxx + a0β)t + ββxxx + 3βxβxx + 4a0ββx − 3q0βx = 0.

(2.19)

For q0 = 0 and a0 = −1, (2.19) is the well-known Degasperis–Procesi equation [7], whose Lax pair in
accordance with (2.17) and (2.18) is

ψxxx − ψx − λ(βxx − β)ψ = 0,

λψt + ψxx + λβψx − (1 + λβx)ψ = 0,
(2.20)

which is equivalent to the Lax pair in [7].

2.1.2. Vakhnenko equation. For the case A1 = 0, A2 = 1, and a0 = 0, we can integrate (2.16) as

βxx + 1 =
q0

M
,

[(βt + ββx)x + 3β]x = 0,

(2.21)

which is the derivative of the Vakhnenko equation [11], whose Lax pair in accordance with (2.17) and (2.18)
is

ψxxx + 2
Mx

M
ψxx +

Mxx

M
ψx − λ

M
ψ = 0,

λψt + Mψxx + (λβ + Mx)ψx + λβxψ = 0.

(2.22)

So far as we know, this is the first time a Lax pair for the Vakhnenko equation has been obtained
in its original variables x and t. The previously known Lax pair [14], [12] was written after a reciprocal
transformation that is a particular case of the one in the next section.

3. Second reciprocal transformation

A different reciprocal transformation can be constructed using the changes

dx2 = η(y, z, T )(dz − u(y, z, T ) dy − ω(y, z, T ) dT ),

x1 = y, x3 = T.
(3.1)

The partial derivatives then transform as

∂

∂x1
=

∂

∂y
+ u

∂

∂z
,

∂

∂x2
=

1
η

∂

∂z
,

∂

∂x3
=

∂

∂T
+ ω

∂

∂z
, (3.2)

and the compatibility conditions
ηy + (uη)z = 0,

ηT + (ηω)z = 0,

uT − ωy − uωz + ωuz = 0

(3.3)
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trivially arise. We select the transformation by setting the field H as the new independent variable z:

z = H(x1, x2, x3) ⇒ dz = Hx1 dx1 + Hx2 dx2 + Hx3 dx3. (3.4)

Comparing (3.2) and (3.4), we obtain

Hx2(x1, x2, x3) =
1

η(y = x1, z = H, T = x3)
,

Hx1(x1, x2, x3) = u(y = x1, z = H, T = x3),

Hx3(x1, x2, x3) = ω(y = x1, z = H, T = x3).

(3.5)

With this transformation, system (1.5) becomes

A1

(
uzy + uuzz +

1
4
u2

z + 3u − G

)
z

+ A2(uzy + uuzz + u2
z + 3u − G)z = 0,

Gy = (ω − uG)z ,

(3.6)

where G(z, y, T ) is defined as G = ηΩ and we use (3.3) and (2.8). Lax pair (1.4) can also be transformed
accordingly with the result

A1

[
Φzy + uΦzz + Φ +

1
2
uzΦz

]
+ A2[Φzy + uΦzz + Φ] = 0

for the spatial part and

A1

[
ΦT − Φyyy − u3Φzzz + 3u

(
uy − 1

2
uuz

)
Φzz +

3
2
uyΦ

]
+

+ A1

(
ω − uyy +

uyuz − u2uzz − uG − 3u2

2
− uu2

z

8

)
Φz +

+ A2(ΦT − Φyyy − u3Φzzz + 3uuyΦzz + Φ) +

+ A2(ω − 2uG− uyy + u2uzz − uyuz + uu2
z + 3u2)Φz = 0 (3.7)

for the temporal part.

3.1. Reduction independent of T . As in Sec. 2, the reduction independent of T can be obtained
by setting

ω = 0, ΦT = λΦ. (3.8)

System (3.6) reduces to

Gy + (uG)z = 0,

A1

[
uzy + uuzz +

1
4
u2

z + 3u − G

]
z

+ A2[uzy + uuzz + u2
z + 3u − G]z = 0.

(3.9)
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It is very interesting that (3.9) for G = 0 reduces to the Vakhnenko equation up to a constant if A1 = 0
and to a modified Vakhnenko equation if A2 = 0.

The Lax pair can be reduced by directly applying (3.8) to (3.7), but it requires voluminous computa-
tions, which we have done with MAPLE. The result of these computations is

A1

[
λΦzzz +

(
G − λ

Nz

N

)
Φzz +

(
3
2
Gz − Nz

N
G

)
Φz

]
+

+ A1

[(
Gzz +

N2

2
− Nz

N
Gz

)
Φ
2

]
+

+ A2[λΦzzz + GΦzz + GzΦzz + (uzz + 1)Φ] = 0,

A1

[
Φy − 2λ

N
Φzz +

(
u − 2G

N

)
Φz −

(
uz

2
+

Gz

N

)
Φ

]
+

+ A2[Φy − λΦzz + (u − G)Φz − uzΦ] = 0,

(3.10)

where we set N = uzz + 2 for simplicity.
We note that for G = 0 and A1 = 0, we obtain the 1+1 Lax pair

λΦzzz + (uzz + 1)Φ = 0,

Φy − λΦzz + uΦz − uzΦ = 0,
(3.11)

whose compatibility condition is
[uzy + uuzz + u2

z + 3u]z = 0, (3.12)

which is the derivative of Vakhnenko equation. Therefore, (3.11) is an alternative form of writing a Lax
pair for the Vakhnenko equation.

4. Conclusions

We have presented a spectral problem in 2+1 dimensions and investigated different reciprocal trans-
formations for it. We gave reductions to 1+1 dimensions of the transformed spectral problems. The
Vakhnenko–Parkes and Degasperis–Procesi equations appear in this context as particular cases of (1.5).
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