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Abstract
This paper deals with the spectral problem of the Manakov–Santini system. The
point Lie symmetries of the Lax pair have been identified. Several similarity
reductions arise from these symmetries. An important benefit of our procedure
is that the study of the Lax pair instead of the partial differential equations yields
the reductions of the eigenfunctions and also the spectral parameter. Therefore,
we have obtained five interesting spectral problems in 1 + 1 dimensions.

PACS numbers: 02.30.Jr, 02.40.−k, 02.60.−x
Mathematics Subject Classification: 3506, 35P30, 35051

1. Introduction

One of the most powerful instruments to study and/or solve a given differential equation is
the identification of the Lie point symmetries of the equation [8]. A standard method for
finding solutions of a partial differential equation (PDE) is that of reduction by using Lie
symmetries: each Lie symmetry allows a reduction of the PDE to a new equation with the
number of independent variables reduced by one. Classical [8, 13] and nonclassical [2, 11]
Lie symmetries are the usual way used to identify the reductions. The similarity reduction of
PDEs obtained through the calculation of their Lie symmetries is a standard procedure that
has been successfully applied in the scientific literature for many decades. The connection
between these methods and/or other methods for obtaining similarity reductions has also been
extensively discussed [5, 6].

As is well known, one of the best proofs of the integrability of a PDE is the existence of
a Lax pair, which requires the introduction of a new dependent field (the eigenfunction) and a
constant (the spectral parameter), which can also be interpreted as a new independent variable
such that only the eigenfunction depends on it.

It is natural to deal with the problem of identifying reductions of the Lax pair instead
of those of the equations [9]. The obvious benefit is that, in this case, we know how the
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eigenfunction and spectral parameter will reduce [7]. This is by no means a trivial question, as
we can see in the example that we are interested here. This example is the Manakov–Santini
system [10], which reads

uxt + uyy + (uux)x + vxuxy − vyuxx = 0

vxt + vyy + uvxx + vxvxy − vyvxx = 0,
(1.1)

with the Lax pair

ψy = −(λ + vx)ψx + uxψλ

ψt = −(λ2 + λvx + u − vy)ψx + (λux − uy)ψλ,
(1.2)

where u = u(x, y, t), v = v(x, y, t), ψ = ψ(x, y, t, λ).
Equation (1.1) is a member of the Manakov–Santini hierarchy [10] and it is well known

that it has several interesting reductions [3, 4, 12].
According to our previous statement, here we shall address with the Lie point symmetries

of the Lax pair (1.2), where u, v, ψ are the dependent variables and x, y, t, λ the independent
ones.

The plan of the paper is as follows.

• Calculation of the Lie symmetries of the Lax pair (1.2) is dealt with in section 2.
• The five different reduced spectral problems appear in section 3. The equations obtained

from these spectral problems are also identified. Two of them are linear equations than
can be integrated. The other three systems include equations such as the Monge–Ampere
and modified Hunter–Saxton equations.

• We conclude with a section of conclusions.
• Some necessary but tedious expressions are listed in the appendix.

2. Lie point symmetries of the spectral problem

Here, we are interested in the Lie symmetries of the Lax pair. Actually, the symmetries of
equations (1.1) are interesting in themselves, but we also wish to know how the eigenfunction
and the spectral parameter transform under the action of a Lie symmetry. More precisely, we
wish to know what these fields look like under the reduction associated with each symmetry.
This is why we shall proceed to write the infinitesimal Lie point transformation of the variables
and fields that appear in the spectral problem. The benefits of such a procedure have been
shown in [9] and [7].

In the present case, it is important to note that the spectral parameter appears as an
independent variable.

The infinitesimal form of the Lie point symmetry that we are considering is

x ′ = x + ε ξ1(x, y, t, λ, ψ, u, v) + O(ε2)

y ′ = y + ε ξ2(x, y, t, λ, ψ, u, v) + O(ε2)

t ′ = t + ε ξ3(x, y, t, λ, ψ, u, v) + O(ε2)

λ′ = λ + ε ξ4(x, y, t, λ, ψ, u, v) + O(ε2)

u′ = u + ε φ1(x, y, t, λ, ψ, u, v) + O(ε2)

v′ = v + ε φ2(x, y, t, λ, ψ, u, v) + O(ε2)

ψ ′ = ψ + ε φ3(x, y, t, λ, ψ, u, v) + O(ε2),
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where ε is the group parameter. The associated Lie algebra of infinitesimal symmetries is the
set of vector fields of the form

X = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂t
+ ξ4

∂

∂λ
+ φ1

∂

∂u
+ φ2

∂

∂v
+ φ3

∂

∂ψ
. (2.1)

We also need to know how the derivatives of the fields transform under the Lie symmetry,
which means that we have to introduce the ‘prolongations’ of the action of the group to the
different derivatives that appear in (1.2). Exactly how to calculate the prolongations is a very
well-known procedure whose technical details can be found in [2, 13].

It is therefore necessary that the Lie transformation should leave (1.2) invariant. This
yields an overdetermined system of equations for the infinitesimals ξ1(x, y, t, λ, ψ, u, v),
ξ2(x, y, t, λ, ψ, u, v), ξ3(x, y, t, λ, ψ, u, v), ξ4(x, y, t, λ, ψ, u, v), φ1(x, y, t, λ, ψ, u, v),
φ2(x, y, t, λ, ψ, u, v) and φ3(x, y, t, λ, ψ, u, v).

Below is a summary of the classical Lie method [13] of finding Lie symmetries.

• Calculation of the prolongations of the derivatives of the fields that appear in (1.2).
• Substitution of the transformed fields (2.1) and their derivatives in (1.2).
• Set all the coefficients in ε at 0.
• Substitution of the prolongations.
• ψy and ψt can be substituted by using (1.2).
• The system of equations for the infinitesimals can be obtained by setting each coefficient

in the different remaining derivatives of the fields at zero.

From the technical point of view, calculation of the determining equations can be performed by
using computer packages such as MACSYMA or MAPLE. We have used both independently
to determine the equations and solve them. The result is the following set of symmetries:

ξ1 = −1

2
(2α − τt )t y

2 + βy + (2α − τt ) x + γ

ξ2 = αy + δ

ξ3 = τ

ξ4 = (α − τt )t y + (α − τt ) λ − β − δt

φ1 = 2 (α − τt ) u +
1

2
(α − τt )tt y

2 − (β + δt )t y − (α − τt )t x + θ

φ2 = (3α − 2τt ) v +
(α

2
− τt

3

)
t t

y3 −
(

β +
δt

2

)
t

y2

+ [(2τt − 3α)tx + θ − γt ]y + (2β + δt )x + σ

φ3 = �(ψ),

(2.2)

where � is an arbitrary function of ψ and τ, α, β, δ, γ, θ, σ are arbitrary functions of t.
Therefore, the symmetries depend on eight arbitrary functions.

2.1. Nonclassical Lie symmetries

As is well known, there exist the so-called nonclassical symmetries [2, 11] that are symmetries
of the equation together with the ‘invariant surface conditions’

φ1 = ξ1ux + ξ2uy + ξ3ut

φ2 = ξ1vx + ξ2vy + ξ3vt (2.3)

φ3 = ξ1ψx + ξ2ψy + ξ3ψt + ξ4ψλ.

3
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These conditions allow us to eliminate more derivatives of the fields in the determining
equations. As is well known, this elimination differs, depending on whether the values of
ξ1, ξ2, ξ3 are zero or not. We looked for these symmetries in (1.2) but all of them are contained
in (2.2). Therefore, the nonclassical method does not provide new symmetries.

Let us now determine the 1 + 1 spectral problems in 1 + 1 dimensions derived from
the different possible reductions of (2.2). These reductions can be obtained by solving the
characteristic system [7, 13] associated with the vector field (2.1). In our case this system is

dx

ξ1
= dy

ξ2
= dt

ξ3
= dλ

ξ4
= du

φ1
= dv

φ2
= dψ

φ3
. (2.4)

3. Similarity reductions of the spectral problem

There are several independent reductions depending on whether the arbitrary functions that
appear in (2.2) are zero or not. We will classify the reductions into five classes.

I. Reductions for τ �= 0.

We can solve the characteristic equation (2.4) and we find the following results.

• Reduced variables. The reduced variables z1, z2 can be defined as

z1 = B1y − B2, z2 = B2
1τx − C1B

2
1y2 − B1B3y − B4. (3.1)

• Spectral parameter. Let � be the reduced spectral parameter. Thus, it is obtained as

� = τB1λ + C2B1y + (δB1 + B3). (3.2)

• Reduced fields.∫
dψ

�(ψ)
= e

∫
dt

τ (t) �(z1, z2,�)

u(x, y, t) = F(z1, z2) + B5

τ 2B2
1

+
C2B1x + N1y

2 + N2y

τB1

v(x, y, t) = H(z1, z2) + B6

τ 2B3
1

+

(
N3B1y + N4

τB1

)
x +

N5B
2
1y3 + N6B1y

2 + N7y

τ 2B2
1

,

(3.3)

where F(z1, z2) and H(z1, z2) are the reduced fields and �(z1, z2) is the reduced
eigenfunction.

The derivatives of the functions Bi = Bi(t), i = 1, . . . , 6, are related to the seven
arbitrary functions τ, α, δ, β, γ, θ, σ . The explicit relations are shown in appendix A.
C1 = C1(t), C2 = C2(t) and Ni = Ni(t), i = 1, . . . , 7, are auxiliary functions that are
also explicitly written in appendix A.

• Reduced spectral problem. We can now substitute the reductions (3.1)–(3.3) in (1.2) to
obtain the following Lax pair in 1 + 1 dimensions:

∂�

∂z1
+

∂�

∂z2
(Hz2 + �) − Fz2

∂�

∂�
= 0

(Fz1 − �Fz2)
∂�

∂�
+ (F − Hz1 + �Hz2 + �2)

∂�

∂z2
+ � = 0.

(3.4)

4
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• Reduced equations. The compatibility condition of (3.4) yields the following system of
equations in 1 + 1 dimensions:

(FFz2 − Hz1Fz2)z2 + (Fz1 + Hz2Fz2)z1 = 0

Hz1z1 + FHz2z2 + Hz2Hz1z2 − Hz1Hz2z2 = 0,
(3.5)

which contains as a particular case the equations
– H = 0

Fz1z1 + FFz2z2 = 0
– F = 0

Hz1z1 + Hz2Hz1z2 − Hz1Hz2z2 = 0
– F = Hz1 (

Hz1 +
H 2

z2

2

)
z1z1

= 0.

II. Reductions for τ = 0, α �= 0.

In this case it is useful to define the function

K = K(y, t) = y +
δ

α
.

• Reduced variables. Let z1, z2 be the reduced variables. They can be obtained by solving
(2.4) as

z1 =
∫

M1(t) dt

z2 = x − B2

K2M1
− B1

KM1
+ ln(K) − M2.

(3.6)

• Spectral parameter. The reduced spectral parameter � is

� = λ − B3

KM1
− ln(K) + z2 − M3. (3.7)

• Reduced fields. The integration of (2.4) yields the following reductions for the fields:∫
dψ

�(ψ)
= K( 1

α )�(z1, z2,�)

u(x, y, t) = dB3

dt
K + B4 + K2M2

1

[
F(z1, z2) +

1

2
(z2 − ln(K) + 1 − B0)

2 + M4

]

v(x, y, t) = −2 [z2 + M2 − ln(K)] K2M1N1 +
dN1

dt
K2 + N2K + B5

+ K3M2
1

[
H(z1, z2) +

3

2

(
z2 − ln(K) +

4

3
− 2

3
B0

)2

+ M5

]
,

(3.8)

where F(z1, z2) and H(z1, z2) are the reduced fields and �(z1, z2) is the reduced
eigenfunction.

Functions Bi = Bi(t), i = 0, . . . , 5, and Ni = Ni(t), i = 1, . . . , 2, are defined in
terms of the six arbitrary functions α, β, δ, γ, θ, σ . Their explicit expressions appear in
appendix B. The five Mi = Mi(t), i = 1, . . . , 5, functions are, in principle, arbitrary but
we have fixed them in the forms that appear in appendix B in order to have the simplest
form for the spectral problem.

5
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• Reduced spectral problem. In this case, the Lax pair reduces to the following non-
autonomous form:
∂�

∂z1
+ (F − 3H)

∂�

∂z2
+ (�2 − � + 3F − 3H)

∂�

∂�
− e−z1(� + z2)� = 0

(Hz2 − Fz2)
∂�

∂�
+ (Hz2 + �)

∂�

∂z2
+ e−z1� = 0.

(3.9)

• Reduced equations. Although (3.9) is non-autonomous, it yields the following
autonomous system:

Hz1z2 + (F − 3H)Hz2z2 + H 2
z2

+ Hz2 + 3(F − H) = 0

Fz1z2 + (F − 3H)Fz2z2 + F 2
z2

− Hz2 + 2Fz2 + 3(F − H) = 0.
(3.10)

• When F = H , the system includes the equation

(Hz1 − 2HHz2 + H)z2 + 3H 2
z2

= 0,

which can be understood as a modified Hunter–Saxton equation [1]. In this particular
case, the Lax pair (3.9) can be written in the autonomous form:

(Hz2 + �)
∂�

∂z2
+ Hz2z2� = 0

∂�

∂z1
− 2H

∂�

∂z2
+ �(� − 1)

∂�

∂�
− (Hz2 − �)� = 0

by means of the transformation � = (ln(�))z2 .

III. Reductions for τ = α = 0, δ �= 0.

• Reduced variables. The integration of the characteristic system provides the reduced
variables

z1 =
∫

M1 dt

z2 = 1

M2

(
x − βy2 + 2γy

2δ

)
.

(3.11)

• Spectral parameter. The reduction of the spectral parameter is

� = λδ + B1y − M3

M2
. (3.12)

• Reduced fields. The reduced fields are∫
dψ

�(ψ)
= e(

y

δ
+M4)�(z1, z2,�)

u(x, y, t) = M2
2

δ2
F(z1z2) +

− dB1
dt

y2 + 2θy

2δ
+ N1 (3.13)

v(x, y, t) = M2
2

δ
H(z1z2) +

B4y
3 + B3y

2 + (2M2B2z2 + σ) y

δ
+ N2,

where F(z1, z2) and H(z1, z2) are the reduced fields, �(z1, z2) is the reduced
eigenfunction and � is the reduced spectral parameter.

Functions Bi = Bi(t), i = 0, . . . , 4, are defined in terms of the arbitrary functions
β, δ, γ, θ, σ . Their explicit expressions appear in appendix C. The Mi = Mi(t), i =
1, . . . , 3, Ni = Ni(t, z2), i = 1, . . . , 3, functions are in principle arbitrary, but we can fix
them in the forms that appear in appendix C in order to have the simplest form for the
spectral problem.

6
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• Reduced spectral problem

(Hz2 + �)
∂�

∂z2
− Fz2

∂�

∂�
+ � = 0

∂�

∂z1
+ F

∂�

∂z2
− �� = 0.

(3.14)

• Reduced equations. The compatibility condition yields

Hz1z2 + FHz2z2 = 0

Fz1z2 + FFz2z2 + F 2
z2

= 0.
(3.15)

• It is interesting to note that the equation for F is the non-dispersive KdV equation

(Fz1 + FFz2)z2 = 0.

By eliminating F between the two equations (3.15) for H we obtain the equation

F = −Hz1z2

Hz2z2[
1

Hz2z2

(
H 2

z1z2
− Hz1z1Hz2z2

Hz2z2

)
z2

]
z2

= 0,

which can be integrated twice with respect to z2. It yields the generalized Monge–Ampere
equation

H 2
z1z2

− Hz1z1Hz2z2 = a(z1)Hz2 + b(z1).

IV. Reductions for τ = α = δ = 0, β �= 0.

• Reduced variables. The integration of the characteristic system allows us to write the
reduced variables as

z1 =
∫

β(t) dt

z2 = y +
γ (t)

β(t)
.

(3.16)

• Spectral parameter. The reduced spectral parameter � is

� = λz2 + x

βz2
. (3.17)

• Reduced fields. The reduced fields are∫
dψ

�(ψ)
= e

λ
β �(z1, z2,�)

u(x, y, t) = (B2 − B1 y)
β x

z2
+ β2 F(z1, z2)

v(x, y, t) = (−B1 y2 + (B2 − B3)y + B4)
β x

z2
+

x2

z2
+ β2 H(z1, z2),

(3.18)

where F(z1, z2) and H(z1, z2) are the reduced fields and �(z1, z2) is the reduced
eigenfunction.

The functions Bi = Bi(z1), i = 0, . . . , 4, are defined in terms of the four arbitrary
functions β, γ, θ, σ . Their explicit expressions appear in appendix D.

7
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• Reduced spectral problem.

∂�

∂z1
+

(
dB0

dz1
− �

)
∂�

∂z2
+

[
Fz2 − �B1 +

1

z2

(
F − Hz2

)] ∂�

∂�
+ (Fz2 − �B1)� = 0

∂�

∂z2
+

1

z2

(
� − dB0

dz1
+

B5

z2

)
∂�

∂�
+

(
B1 − B6

z2

)
� = 0.

(3.19)

• Reduced equations. The compatibility condition yields the linear equations

d2H

dz2
2

+
2

z2

(
F − dH

dz2

)
= B2

5

z3
2

+
B6B5

z2
2

− B1B5 + dB5
dz1

z2
+

d2B0

dz2
1

+ B1
dB0

dz1
− dB6

dz1
+ z2

dB1

dz1
,

d2F

dz2
2

= B5B6

z3
2

− 1

z2

dB6

dz1
+

dB1

dz1
,

which can easily be integrated as

H(z1, z2) = dB6

dz1
(1 − ln(z2)) z2

2 +
A2(z1)z

3
2

2
+

1

2

(
2A1(z1) − B1

dB0

dz1
− d2B0

dz2
1

)
z2

2

+

(
2C1 +

dB5

dz1
+ B1B5

)
z2

2
+

B2
5

4z2
+ C2,

F (z1, z2) = dB6

dz1
z2 (1 − ln(z2)) +

B5B6

2z2
+

z2
2

2

dB1

dz1
+ A1z2 + C1,

(3.20)

where A1, A2, C1, C2 are arbitrary functions of z1.

V. Reductions for τ = α = δ = β = 0, γ �= 0.

• Reduced variables. The reduced variables z1 and z2 are

z1 =
∫

γ (t) dt

z2 = y.

(3.21)

• Spectral parameter. The reduced spectral parameter � is

� = λ

γ
. (3.22)

• Reduced fields. The reduction of the fields is∫
dψ

�(ψ)
= e

x
γ �(z1, z2,�)

u(x, y, t) = γB1 x + γ 2F(z1z2) (3.23)

v(x, y, t) = γ (B2y + B3)x + γ 2H(z1, z2),

where F(z1, z2) and H(z1, z2) are the reduced fields and �(z1, z2) is the reduced
eigenfunction.

The functions Bi = Bi(z1), i = 0, . . . , 3, are defined in terms of the arbitrary functions
γ, θ, σ . Their explicit expressions appear in appendix E.

• Reduced spectral problem.

∂�

∂z1
− �

∂�

∂z2
+ [Fz2 + �(B2 − B1)]

∂�

∂�
+

(
F − Hz2

)
� = 0

∂�

∂z2
− B1

∂�

∂�
+ (B2z2 + B3 + �)� = 0.

(3.24)

8
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• Reduced equations. The compatibility condition yields the linear equations

d2F

dz2
2

= B1B2 − 2B2
1 − dB1

dz1
,

d2H

dz2
2

= −
(

B1B2 +
dB2

dz1

)
z2 −

(
B1B3 +

dB3

dz1

)
,

which can easily be integrated as

F(z1, z2) =
(

B1B2 − 2B2
1 − dB1

dz1

)
z2

2

2
+ A1z2 + C1,

H(z1, z2) =
(

B1B2 +
dB2

dz1

)
z3

2

6
−

(
B1B3 +

dB3

dz1

)
z2

2

2
+ A2z2 + C2,

(3.25)

where A1, A2, C1, C2 are arbitrary functions of z1.

4. Conclusions

• We have studied the Lie symmetries of the spectral problem of the Manakov–Santini
equation. The procedure requires the consideration of the spectral parameter as an
additional independent variable. Therefore, the Lax pair would be considered as a system
with three fields and four independent variables.

• We have used computer packages such as MAPLE and MACSYMA to handle the
calculation. The resulting symmetries depend on seven arbitrary functions of t and
one arbitrary function of ψ .

• We also looked for nonclassical symmetries and have realized that they are no different
from the classical ones.

• Five independent reductions arise from the symmetries identified. The spectral problems
are obtained for all the reductions. Two of them give rise to nonlinear equations that can
be easily integrated. The other three yield reduced systems that include non-dispersive
KdV, generalized Monge–Ampere and modified Hunter–Saxton equations, among others.
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Appendix A.

The functions Bi(t), Ci(t), Ni(t) that appear in equations (3.1)–(3.3) are

dB1

dt
= −αB1

τ
dB2

dt
= δB1

τ
dB3

dt
= βB1 − 2C1

dB2

dt
dB4

dt
= γB2

1 − B3
dB2

dt
dB5

dt
= B2

1τθ − δB1N2 − B2
1c2γ
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dB6

dt
= στB3

1 − N7
dB2

dt
− γN4B

2
1

C1(t) = τt

2
− α

C2(t) = τt − α

N1 = −1

2

d(C2B1)

dt

N2 = −d(B3 + δB1)

dt
N3 = C2 + 2C1

N4 = 2B3 + δB1

N5 = −1

6

d(τN3)

dt
+

1

2
αN3

N6 = −1

2

d(τN4)

dt
+ αN4

N7 = B5 − B2
3 − τγB2

1 .

Appendix B.

In equations (3.6)–(3.8), several functions Bi(t),Mi(t), Ni(t) of t appear. They are defined as

B0 = 1

M2
1

dM1

dt

B1 = −β − 2δM1

α

B2 = δ2M1 + δβ − γα

2α2

B3 = 1

α

(
δM1 + β +

dδ

dt

)

B4 = 1

4α2

(
βδM1 − αγM1 − δ2 dM1

dt
− 2

d2δ

dt2
− 2δ

dβ

dt

)
− θ

2α

B5 = δ

6α3

(
δ2 dM1

dt
− 2δ2M2

1 + 2δ
dβ

dt
+ δ

d2δ

dt2
− 5βδM1 − 2β2 − δM1

dδ

dt
− β

dδ

dt

)

+
1

6α2

(
2βγ + 2δθ + 3δγM1 + γ

dδ

dt
− 2δ

dγ

dt

)
− σ

3α

N1 = −1

2
(B3 − B1)

N2 = B4 − B1B3 − dB2

dt

M1 = 1

α

dα

dt

M2 = 3 − B0

2
M3 = B0 − 2

M4 = 1

2

(
1

M1

dB0

dt
− B0

)

10



J. Phys. A: Math. Theor. 43 (2010) 495204 M S Bruzón et al

M5 = 1

3

(
1

M1

dB0

dt
− B0

)
+

1

6
.

Appendix C.

The functions Bi(t), Mi(t) and Ni(t, z2) that appear in (3.11)–(3.13) are

B1 = β +
dδ

dt

B2 = β +
1

2

dδ

dt

B3 = 1

2

(
θ − dγ

dt
+ 2

γ

δ
B2

)

B4 = 1

3

(
βB2

δ
− dB2

dt

)

M1 = M2

δ2

M2 = e(−
∫

β

δ
dt)

dM3

dt
= θ − βM3 + βγ + γ dδ

dt

δ
dM4

dt
= γ + M3

δ2

N1 = M2

δ
B1z2 +

σ

δ
− γ 2

δ2

N2 = M2(γ − M3)

δ
z2.

(C.1)

Appendix D.

In (3.16)–(3.18) several functions Bi(z1) are introduced. These read

B0 =
(

γ

β2

)
[t=t (z1)]

B1 =
(

βt

β2

)
[t=t (z1)]

B2 =
(

θ

β2

)
[t=t (z1)]

B3 =
(

γt

β2

)
[t=t (z1)]

B4 =
(

σ

β2

)
[t=t (z1)]

B5 =
(

B4 − B0B2 +
1

β

dB0

dt

)
[t=t (z1)]

B6 = (B2 + B1B0)[t=t (z1)] ,

where we have used dBi

dt
= β dBi

dz1
according to the definition of z1 in (3.16).
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Appendix E.

The functions Bi(z1) introduced in (3.20)–(3.22) are

B1 =
(

θ + γt

γ 2

)
[t=t (z1)]

B2 =
(

θ

γ 2

)
[t=t (z1)]

B3 =
(

σ

γ 2

)
[t=t (z1)]

.
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