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Abstract

Non-isospectral scattering problems have been proven useful for several reasons, amongst
them the information that they provide about Painlevé truncation for entire hierarchies of
integrable partial differential equations (PDEs). We show in this paper how our approach
provides in a very straightforward manner truncation results for two hierarchies in 1+ 1
dimensions, namely Burgers’ hierarchy and the dispersive water wave hierarchy. Burgers’
equation is well-known as a model for turbulence, and the dispersive water wave equations as
a system governing shallow water waves. We also see how these results are easily extended to
related hierarchies in 241 dimensions. Our results for the 2+ 1-dimensional Burgers’
hierarchy, and for the 1+ 1 and 2+ 1-dimensional dispersive water wave hierarchies, are
all new.
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1. Introduction

The truncation methods based on Painlevé analysis have been used now for several
years to derive important properties of integrable partial differential equations
(PDESs). Given a hierarchy of integrable PDEs it is then a natural question to ask
how the truncation results can be extended from a single equation to the entire
hierarchy. The first results in this direction are due to Weiss [1] and include, amongst
other examples, truncation results for the Korteweg—de Vries (KdV) hierarchy.
These results relied on the knowledge of certain properties of the hierarchies under
consideration such as, for example, that of a modified hierarchy or of a Schwarzian
formulation.

In a recent paper [2] we presented a new method of deriving truncation results for
hierarchies of integrable PDEs which is considerably much simpler than that of
Weiss and does not make use of the knowledge of the above-mentioned properties.
In Ref. [2] we used the KdV hierarchy as an example to illustrate the effectiveness of
the method, and we also observed that results for 1 + 1-dimensional hierarchies can
be extended to related hierarchies in 2 + 1 dimensions.

The method introduced in Ref. [2] made use of PDEs associated to non-isospectral
scattering problems, i.e., where the spectral parameter in the Lax pair is no longer
constant but instead satisfies some differential equation [3-9]. In fact, our method
has its starting point in our previous work [10-13] on such scattering problems,
where we showed how a single equation can be used to characterize the entire
corresponding non-isospectral hierarchy.

Thus in Ref. [2], instead of the KdV hierarchy

Uy, =#"U,, n=0,1,2..., (1)
where Z is the KdV recursion operator,

R =0"+4U 420,07, 8, =0/0x, ()
we considered truncation for the equation

U =2U,. 3)

Iteration of the results of this truncation then yields truncation result for the KdV
hierarchy, or more generally for the hierarchy U,,,,, = #"U,, depending on whether
as base equation we take U, = 2U, or U, = ZU,.

The aim of the present paper is to show the power of this new method through its
application to other hierarchies based on physically interesting equations, namely
Burgers’ equation, well-known as a model for turbulence, and the dispersive water
wave (DWW) system, which governs shallow water waves. In Section 2 we apply our
method to Burgers’ hierarchy, and in this way recover the results given in Ref. [14];
we also extend these results to obtain the truncation for the corresponding 2+ 1-
dimensional hierarchy, which has not been given before. In Section 3 we consider the
dispersive water wave hierarchy and derive truncation results for both the standard
(isospectral) hierarchy [15-22], and also for the associated non-isospectral hierarchy
[13]. Both sets of results—i.c., including even those obtained for the standard
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hierarchy—are new. Section 4 is devoted to conclusions and to a summary of our
results.

2. Truncation for the 1 + 1 and 2 + 1-dimensional Burgers’ hierarchies

In this section we consider Burgers’ hierarchy, i.e.,

U,.,=R2"U,=0,L,[U =0(T[U)'U, n=0,1,..., 4
where T[U] and £ are given by

T[U]=0,+1U (5)
and

% =0, T[UP,", (6)

respectively. The first non-trivial member of this hierarchy is the well-known
Burgers’ equation

U,=(U,+10%,. (7)

As described in the Introduction, we therefore consider the equation U, = U,
which under the change of variables U = u, can be written in potential form as

Uy = Uy + %uxur . (8)

We note that this equation was first given in Ref. [23]. We now consider the
truncation for Eq. (8) in the standard Weiss—Tabor—Carnevale notation. It is easy to
obtain that the truncated expansion is

u=2logp+v )
with v a second solution of Eq. (8),

U = Uxe + 1000 = @y + u0)0e (10)
and with ¢ satisfying

@1 = P + 300, +0:0) = (Ox + 3000, + 5000, - (11)
Egs. (10) and (11) are the singular manifold equations for Eq. (8).

2.1. Truncation for Burgers’ hierarchy

In order to obtain the truncation for Burgers’ hierarchy we iterate on the above
results, taking as starting point the singular manifold equations for (potential)
Burgers’ equation itself, which are readily obtained by making the reduction 0/0t =
0/0x in the above results:

u=2logop+v (12)
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satisfies

u;, =uxx+%ui, (13)
if v satisfies the same equation

Uy = Uy +107, (14)
and if ¢ satisfies

P, = Prx T 0P - 15)

We then set # = ¢,4; and 7 = ¢, in Eqgs. (10) and (11) and iterate. From Eq. (10) we
easily obtain

Oy = @x +30)vy, =+ = @ + 300" o, = (T[ou]) vy - (16)
Meanwhile, Eq. (11) gives

@y, = @x + 3000, +30,0, (17)
iteration of which leads to

?,,, = M,[V]le, (18)

where M ,[v] = L,[v,] and M’ [v] is its Fréchet derivative. This we prove by induction.
For n =1 we have

@, = Mi[vlp = (3} + 0:0.)0 = @, + 020, (19)

which is precisely Eq. (15) (we note that M [v] = vy +%v_2\,). We now assume that
(18) is true for the 7, flow, that is, ¢, = M,_,[v]e; then from (17)

Pty = (ax + %Ux)thn + %Utnqox = T[UX]M;z—] [U]QD + %Mn—l [v]ax(P
= (T[v M, 1 [v]) ¢ = M, [v]g (20)

where we have used the fact that M,[v] satisfies the recursion relation
M [v] = TTox]M 1 [v].

Thus we conclude that the singular manifold equations for the potential Burgers’
hierarchy wu;,,, = M,[u] are given by Eqs. (16) and (18). It then follows that the
singular manifold equations for Burgers’ hierarchy (4), corresponding to the
truncation

v=2%4vp, 1)
¢
are
Vi = 0cL,[V], (22)
i.e., that V is a second solution of (4), and
@y, = Ly[V]o, - (23)

Thus we have recovered the results obtained in Ref. [14].
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Setting V = ¢ gives the special auto-Bicklund transformation of Burgers’
hierarchy

v=2%44, (24)
®
and setting V' = 0 gives the linearization
U=2% 25)
®
onto
0, =00 (26)

We note that in the case of Burgers’ equation itself, the truncation results were
originally obtained in Ref. [24] and the auto-Bicklund transformation (24) in Ref.
[25]. The linearization (25) is of course the Cole—Hopf transformation [26].

2.2. Truncation results for the 2 + 1-dimensional Burgers’ hierarchy

We now consider the construction of the singular manifold equations for the 2 +
I-dimensional Burgers’ hierarchy

Upy = AU,y 27

which, using the same change of variables as before, U = u,, we will consider in
potential form

U,y = Pulu] = (Tux])"uy . (28)

The truncation

u=2logp+v (29)
then gives, instead of Eq. (16),

vy, = Pulv] = (T[Ux])nuy (30)

since, for the 2 + 1-dimensional hierarchy, we have as base equation v;, = T[v,]v,.

Let us consider now the second of the singular manifold equations. For n =1 in
(28) this second singular manifold equation is obtained from (11), with # = f, and
T=y,as

(ptz = ¢xy+%UX@y+%”y(Px’ (31)
which is precisely the linearization of v, = P;[v],
@, = Pilvle, (32)
where the Fréchet derivative of P,[v], P, [v], is defined as
aPn[U
-3 . @
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The same result holds for higher members of the hierarchy, i.e., instead of (18) we
obtain that the second singular manifold equation is

?,,,, = P[v]o, (34)

a result that we again prove by induction. Assuming that (34) is true for the ¢, flow,
ie., ¢, = P,_[v]lp, we obtain from (11), with t = ¢,4; and t = t,, that

Pt = Oy + %Ux)(Pz,, + %Utn(px = T[Ux]Pi,fl[v](P + %Pnfl[vlax(/)
= (T[v)Po1[v]) @ = Pyv]g . (35)

We thus obtain that Egs. (30) and (34) are precisely the singular manifold equations
for the 2 + 1-dimensional Burgers’ hierarchy.

We note in addition that we also have, setting ¢ = v,, the special auto-Bécklund
transformation of the hierarchy (28),

u=2log(vy)+v, (36)
and, setting v = 0, the linearization

u=2log ¢ (37
of the hierarchy (28) onto

®,,,, =0\, . (38)

The first of these is the 2 + 1-dimensional generalization of the special auto-Backlund
transformation (24) of Burgers’ hierarchy, and the second is the 2+ 1-dimensional
generalization of the Cole—Hopf transformation, for the entire hierarchy.

3. Truncation for the 1 + 1 and 2 + 1-dimensional DWW hierarchies

This section is concerned with the derivation of truncation results for the DWW
hierarchy [15-22] and the corresponding 2+ I-dimensional non-isospectral hier-
archy. Truncation results for these hierarchies have not been given before.

We begin with the standard DWW hierarchy, which we take here in the form

W, =#"W,, n=01,..., (39)

where W = (W, V)T, R = BzBl’1 is the recursion operator, and B, and B; are two of
the Hamiltonian operators of the DWW hierarchy, given by

b 1 2 oW @0
2T\ wo, 20} 42ve, 4V, )"

B = (0 ax> . (41)
oc 0

and
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In terms of the Hamiltonian operators B, and B; the hierarchy (39) can be expressed
in the form
W, = BL,11[W] = BL,[W], (42)

where L, = (M,,, N,)', Ly = (0,—2)" and L, = (V, W)".
The first step in our method consists of obtaining truncation results for an
equation of the form

W, = %W, . (43)
Here we consider the slight generalization

Usi + Ve 45U U, +9(r,0) =0, (44)

Vit Usxxe + UV + %(Ux Ve+ U, Vx) =0 5 (45)

where we have set W = U,, in order to write the system in local form.
The truncation for the system (44), (45) was performed in Ref. [27]. We summarize
here the results: U and V' given by

U=2logZ+u, (46)

V=2Z"'+BZ), —4B, (47)
satisfy the system (44), (45), where Z satisfies the Riccati system

Z.=1-AZ - BZ*, (43)

Z;=—C'4(AC' + C")Z — (D' — BC"Z*, (49)

Z,=—C"+(AC" 4 CY)Z — (D" — BC"HZ*, (50)
and the coefficients 4, B, C', D', C* and D" are given by

A:—i—i—%ux, (51

B= _41_; (v — Uxx) (52)

C'=-iC"+1u., (53)

D'= D" — %(v — Uxy); (54)

Az, 1) is a function of integration that satisfies the relation g + 2(4, + A4;) = 0 and u
and v are solutions of the system (44), (45).
Since we have the relations

C'=IrC"+C, D'=ID'+D, I',=0, (55)
we can write the Riccati system (48)—(50) in the form
Z.=1-AZ - BZ*, (56)

Z,=TZ,—C+(AC+ CyZ— (D - BO)Z?, (57)
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where C = Yu,, D=—Yv—uy), and I =—J. Imposing now the additional
condition g = 0, the linearization of the above Riccati system provides the Lax
pair for the system (43), together with the non-isospectral condition A, = —/4,, and
the truncation (46), (47) is precisely its Darboux transformation.

3.1. Truncation for the DWW hierarchy

We now consider iterating to obtain truncation results for the standard DWW
hierarchy (39). We therefore need, as a starting point for the iteration, the truncation
for the reduction 0/0, = 0/0, of the system (43) with ¢ = 11, i.e.,

1
U, + (V+5 Ui) =0, (58)
X

This system is the classical Boussinesq system. Truncation for the classical
Boussinesq system has been considered by several different authors, e.g. [22,28,27];
here we will adopt the approach used in Ref. [27].

Under this reduction we have C* = —1 and D* = 0, so that

U=2logZ+u, (60)

V=2Z"4BZ), - 4B, (61)
satisfy the system (58), (59), where Z satisfies the Riccati system

Z.=1-—AZ — BZ*, (62)

Z, =—C" 4 (AC" + C")Z — (D" — BC")Z?, (63)
with coefficients

A:—/H—%ux, (64)

B= _% (v — Uy, (65)

C" =i+1u,, (66)

D" = _% (U - uxx)x > (67)

and where 2 is now constant.
We now turn to the iteration process. Truncation for the 1+ 1-dimensional DWW
hierarchy (39) gives the Darboux transformation

W =2(log Z),+w, (68)

V=2Z"'4+BZ), —4B, (69)
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with w = (w, )T = (uy, v)" being a second solution of (39), together with the Lax pair
obtained from the linearization of the Riccati system for the ¢, flow,

Z.=1-AZ — BZ*, (70)

Z, = —C" +(AC" + C")Z — (D" — BC")Z* . (71)

In order to obtain the coefficients of the above Riccati system, it only remains to
iterate in Eqgs. (53) and (54). We note that the relation 4,, = —A4,,_, gives that 1is a
constant for the entire hierarchy.

Let us consider first Eq. (53). We set t = ¢, and © = ¢, and iterate to obtain:

C[” - _ /'Lctn,l +%ut,,_1 (72)
= — )L(—ict”’z + %ul‘”,z) + %utn—l (73)
_ (_;)n—lctl +l Xn:(_;)’l*ku (74)
= L 2 v tg—1 *
k=2

Iterating Eq. (54) we obtain, similarly,

D" = — D" —Xv—uyw), "
. 1 & n—
= (_}) lDtl — Z Z(_i) k[vlk—l - (uxx)tk—l] : (76)
k=2

From (42) we obtain u,_, = Ni[w] and v,,_, = 0, M,[w]. We also have, from Eqgs.
(66) and (67),

' =i+1w, (77)
2

D" = —L(vx — wyy) . (78)

Substituting into (74) then gives

€ = (DS (79)
2 k=2
1 n
= AT G+ ) (AN (80)
1 n
=5 > (=2 ENw] (81
k=0

where we have used that No[w] = —2 and N[w] = w.
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Substituting into Eq. (76) we obtain

1 & ]
Din — (—i)n—lDtl -2 Z(_/l)"fk[vtk—l - (ux~")fk71] (82)
k=2
= - %(_/Ah)nil(vx - VVxx) - % Z(—/Ah)nik[aka[W] — aiNk[w]] (83)
k=2
= — % Z(_ A R0, M [w] — O Ny [w]], (84)
k=1

where we now have also used that M [w] = v.

Thus we obtain truncation results for entire DWW hierarchy. We see that the
result of the truncation is the recovery of the Lax pair and Darboux transformation
for every member of the DWW hierarchy. These results are new.

3.2. Truncation for the non-isospectral DWW hierarchy

We now consider the derivation of truncation results for the 2 + 1-dimensional
DWW hierarchy

W, =%#"W,, n=0,1,.... (85)
Using the same change of variables as before, that is, W = (U, V)T, we introduce
the quantities Q, and Pj defined by the relation %k_l(ny, Vy)T = (Qk,Pk)T, and
take the hierarchy (85) in the form

U, .
(v),= () o
Vv tw Pn+1

The result of the truncation is that

U=2logZ+u, (87)
V=2Z"'+BZ), —4B, (88)
is a solution of (86), where as before
A= i+l (89)
B= _41_; (v — ), (90)
and (u,v) is a second solution of (86). Here Z satisfies the Riccati system
Z.=1-AZ - BZ*, oD
Z, =—C"+(AC" + C'")Z — (D" — BC")Z*, (92)
Z,=—C"+(AC" + C)Z — (D’ — BC*)Z*. (93)

We now need to obtain, as for the standard DWW hierarchy, the expressions for the
coefficients C™ and D', as well as the equation satisfied by the spectral parameter.
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This last is obtained by iteration as

hy = —ddayy = = (=2 Dy = (1), (94)

which then gives the non-isospectral condition for the ¢, flow (86).
We now turn to the derivation of the expressions for the coefficients in the Riccati
system. Iterating in Eq. (53) we obtain

1 n
Ch = (_)L)n—l Ch + 5 Z(_i)n_kutk,l
k=2
n—1 2 1 1 & n—k
= (" A 5w ) + 5Z(—z) Uy,
k=2
1 n
= (='C +3 > =" 95)
k=1

whereas iteration in Eq. (54) yields

1 n
D — (_}v)nletl _ Z Z(_A)nik[vt,‘,l _ (uxx)tk,l]
k=2
1 n
= (=2 =AD" = s = wid 1 = D (=" Mo = )y, ]
k=2

1 n
= (_A)nDy - Z Z(_i)nik[vtkq - (MXX)IA'fl] ? (96)
k=1

where in these last we have used Egs. (53) and (54) with ¢t = ¢; and t = y, and also
that u;,, = u, and v, = v,.

Moreover, using the fact that u, , = G;IQk and v,_, = Pi, where now Q, =
0, (u,v) and P, = Py(u, v), we can write the above expressions for C” and D™ in the
form

Chr = (=2)'C + % S-ir ey ©7)
k=1
1 n
D = (=2)'D" =1 > (=2 [Pk~ 0:0,]. ©8)
k=1

We note here that, in the reduction to the standard DWW hierarchy, we have
C'=-1,D"=0, Q, =0,N; and Py = 0, M}, and thus we recover the results in
Section 3.1.

We observe that Egs. (97) and (98) are of the form

c"=fc"+C, p"=fpD"+D, [,=0, (99)
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where I' = (—1)" and

n 1 &

C=3> (=00, (100)
k=1

> 1 ¢ n—k

D=-7 ;(—i) [Pr = 0041, (101)

and so we can replace the Riccati system (91), (92), (93) with
Z.=1-AZ — BZ*, (102)
Z,=17,—C+(AC+C)Z—-(D—-BC)Z*. (103)

The linearization of this last, together with the non-isospectral condition
A, = (—2)"'Ay, provides the Lax pair for the hierarchy (86); its Darboux
transformation is given by (87), (88). Thus we obtain truncation results for the
2 + l-dimensional hierarchy; in fact, we see that the result of the truncation is the
recovery of the Lax pair and Darboux transformation for every member of this
hierarchy.

4. Conclusions

We have used our new approach to obtain truncation results for hierarchies in
order to derive such for the 1+1 and 2+ I-dimensional versions of both Burgers’
and the dispersive water wave hierarchies. Our results for the 2+ 1-dimensional
Burgers’ hierarchy, and for the 1+1 and 2+ 1-dimensional dispersive water wave
hierarchies, are all new. We note that for these last the singular manifold equation
can be obtained using a gauge transformation (see Ref. [27]); however, it is the
derivation, from truncation, of the Lax pair and Darboux transformation for the
entire hierarchy, as given here, that is of most interest. We also note that our
approach is based on the connection between non-isospectral scattering problems
and hierarchies of integrable PDEs, obtained by iteration of the former [11]. That is,
we iterate on (the generalized form of) the truncation for equations of the form
V, = RV_, for some recursion operator R; iteration on g in (44), (45) is also of course
possible.
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