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Abstract

Non-isospectral scattering problems have been proven useful for several reasons, amongst

them the information that they provide about Painlevé truncation for entire hierarchies of

integrable partial differential equations (PDEs). We show in this paper how our approach

provides in a very straightforward manner truncation results for two hierarchies in 1 þ 1

dimensions, namely Burgers’ hierarchy and the dispersive water wave hierarchy. Burgers’

equation is well-known as a model for turbulence, and the dispersive water wave equations as

a system governing shallow water waves. We also see how these results are easily extended to

related hierarchies in 2 þ 1 dimensions. Our results for the 2+1-dimensional Burgers’

hierarchy, and for the 1 þ 1 and 2+1-dimensional dispersive water wave hierarchies, are

all new.
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1. Introduction

The truncation methods based on Painlevé analysis have been used now for several
years to derive important properties of integrable partial differential equations
(PDEs). Given a hierarchy of integrable PDEs it is then a natural question to ask
how the truncation results can be extended from a single equation to the entire
hierarchy. The first results in this direction are due to Weiss [1] and include, amongst
other examples, truncation results for the Korteweg–de Vries (KdV) hierarchy.
These results relied on the knowledge of certain properties of the hierarchies under
consideration such as, for example, that of a modified hierarchy or of a Schwarzian
formulation.

In a recent paper [2] we presented a new method of deriving truncation results for
hierarchies of integrable PDEs which is considerably much simpler than that of
Weiss and does not make use of the knowledge of the above-mentioned properties.
In Ref. [2] we used the KdV hierarchy as an example to illustrate the effectiveness of
the method, and we also observed that results for 1 + 1-dimensional hierarchies can
be extended to related hierarchies in 2 + 1 dimensions.

The method introduced in Ref. [2] made use of PDEs associated to non-isospectral
scattering problems, i.e., where the spectral parameter in the Lax pair is no longer
constant but instead satisfies some differential equation [3–9]. In fact, our method
has its starting point in our previous work [10–13] on such scattering problems,
where we showed how a single equation can be used to characterize the entire
corresponding non-isospectral hierarchy.

Thus in Ref. [2], instead of the KdV hierarchy

Ut2nþ1
¼ RnUx; n ¼ 0; 1; 2 . . . ; ð1Þ

where R is the KdV recursion operator,

R ¼ q2
x þ 4U þ 2Uxq

�1
x ; qx ¼ q=qx ; ð2Þ

we considered truncation for the equation

Ut ¼ RUt : ð3Þ

Iteration of the results of this truncation then yields truncation result for the KdV
hierarchy, or more generally for the hierarchy Ut2nþ1

¼ RnUy, depending on whether
as base equation we take Ut3 ¼ RUx or Ut3 ¼ RUy.

The aim of the present paper is to show the power of this new method through its
application to other hierarchies based on physically interesting equations, namely
Burgers’ equation, well-known as a model for turbulence, and the dispersive water
wave (DWW) system, which governs shallow water waves. In Section 2 we apply our
method to Burgers’ hierarchy, and in this way recover the results given in Ref. [14];
we also extend these results to obtain the truncation for the corresponding 2+1-
dimensional hierarchy, which has not been given before. In Section 3 we consider the
dispersive water wave hierarchy and derive truncation results for both the standard
(isospectral) hierarchy [15–22], and also for the associated non-isospectral hierarchy
[13]. Both sets of results—i.e., including even those obtained for the standard
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hierarchy—are new. Section 4 is devoted to conclusions and to a summary of our
results.
2. Truncation for the 1 + 1 and 2 + 1-dimensional Burgers’ hierarchies

In this section we consider Burgers’ hierarchy, i.e.,

Utnþ1
¼ RnUx ¼ qxLn½U � ¼ qxðT ½U �Þ

nU ; n ¼ 0; 1; . . . ; ð4Þ

where T ½U � and R are given by

T ½U � ¼ qx þ
1
2

U ð5Þ

and

R ¼ qxT ½U �q�1
x ; ð6Þ

respectively. The first non-trivial member of this hierarchy is the well-known
Burgers’ equation

Ut2 ¼ ðUx þ
1
2 U2Þx : ð7Þ

As described in the Introduction, we therefore consider the equation Ut ¼ RU t,
which under the change of variables U ¼ ux can be written in potential form as

ut ¼ uxt þ
1
2

uxut : ð8Þ

We note that this equation was first given in Ref. [23]. We now consider the
truncation for Eq. (8) in the standard Weiss–Tabor–Carnevale notation. It is easy to
obtain that the truncated expansion is

u ¼ 2 log jþ v ð9Þ

with v a second solution of Eq. (8),

vt ¼ vxt þ
1
2

vxvt ¼ ðqx þ
1
2

vxÞvt ; ð10Þ

and with j satisfying

jt ¼ jxt þ
1
2
ðvtjx þ vxjtÞ ¼ ðqx þ

1
2

vxÞjt þ
1
2

vtjx : ð11Þ

Eqs. (10) and (11) are the singular manifold equations for Eq. (8).
2.1. Truncation for Burgers’ hierarchy

In order to obtain the truncation for Burgers’ hierarchy we iterate on the above
results, taking as starting point the singular manifold equations for (potential)
Burgers’ equation itself, which are readily obtained by making the reduction q=qt=
q=qx in the above results:

u ¼ 2 log jþ v ð12Þ



ARTICLE IN PRESS

P.R. Gordoa et al. / Physica A 345 (2005) 35–4738
satisfies

ut2 ¼ uxx þ
1
2

u2
x ; ð13Þ

if v satisfies the same equation

vt2 ¼ vxx þ
1
2

v2
x ; ð14Þ

and if j satisfies

jt2
¼ jxx þ vxjx : ð15Þ

We then set t ¼ tnþ1 and t ¼ tn in Eqs. (10) and (11) and iterate. From Eq. (10) we
easily obtain

vtnþ1
¼ ðqx þ

1
2

vxÞvtn
¼ � � � ¼ ðqx þ

1
2

vxÞ
n�1vt2 ¼ ðT ½vx�Þ

nvx : ð16Þ

Meanwhile, Eq. (11) gives

jtnþ1
¼ ðqx þ

1
2

vxÞjtn
þ 1

2
vtn

jx ; ð17Þ

iteration of which leads to

jtnþ1
¼ M 0

n½v�j ; ð18Þ

where Mn½v� ¼ Ln½vx� and M 0
n½v� is its Fréchet derivative. This we prove by induction.

For n ¼ 1 we have

jt2
¼ M 0

1½v�j ¼ ðq2
x þ vxqxÞj ¼ jxx þ vxjx ð19Þ

which is precisely Eq. (15) (we note that M1½v� ¼ vxx þ
1
2

v2
x). We now assume that

(18) is true for the tn flow, that is, jtn
¼ M 0

n�1½v�j; then from (17)

jtnþ1
¼ ðqx þ

1
2

vxÞjtn
þ 1

2
vtn

jx ¼ T ½vx�M
0
n�1½v�jþ 1

2
Mn�1½v�qxj

¼ ðT ½vx�Mn�1½v�Þ
0j ¼ M 0

n½v�j ð20Þ

where we have used the fact that Mn½v� satisfies the recursion relation
Mn½v� ¼ T ½vx�Mn�1½v�.

Thus we conclude that the singular manifold equations for the potential Burgers’
hierarchy utnþ1

¼ Mn½u� are given by Eqs. (16) and (18). It then follows that the
singular manifold equations for Burgers’ hierarchy (4), corresponding to the
truncation

U ¼ 2
jx

j
þ V ; ð21Þ

are

Vtnþ1
¼ qxLn½V � ; ð22Þ

i.e., that V is a second solution of (4), and

jtnþ1
¼ L0

n½V �jx : ð23Þ

Thus we have recovered the results obtained in Ref. [14].
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Setting V ¼ j gives the special auto-Bäcklund transformation of Burgers’
hierarchy

U ¼ 2
jx

j
þ j ; ð24Þ

and setting V ¼ 0 gives the linearization

U ¼ 2
jx

j
; ð25Þ

onto

jtnþ1
¼ qnþ1

x j : ð26Þ

We note that in the case of Burgers’ equation itself, the truncation results were
originally obtained in Ref. [24] and the auto-Bäcklund transformation (24) in Ref.
[25]. The linearization (25) is of course the Cole–Hopf transformation [26].

2.2. Truncation results for the 2 + 1-dimensional Burgers’ hierarchy

We now consider the construction of the singular manifold equations for the 2 +
1-dimensional Burgers’ hierarchy

Utnþ1
¼ RnUy ð27Þ

which, using the same change of variables as before, U ¼ ux, we will consider in
potential form

utnþ1
¼ Pn½u� ¼ ðT ½ux�Þ

nuy : ð28Þ

The truncation

u ¼ 2 log jþ v ð29Þ

then gives, instead of Eq. (16),

vtnþ1
¼ Pn½v� ¼ ðT ½vx�Þ

nvy ð30Þ

since, for the 2 + 1-dimensional hierarchy, we have as base equation vt2 ¼ T ½vx�vy.
Let us consider now the second of the singular manifold equations. For n ¼ 1 in

(28) this second singular manifold equation is obtained from (11), with t ¼ t2 and
t ¼ y, as

jt2
¼ jxy þ

1
2

vxjy þ
1
2

vyjx ; ð31Þ

which is precisely the linearization of vt2 ¼ P1½v�,

jt2
¼ P0

1½v�j ; ð32Þ

where the Fréchet derivative of Pn½v�;P
0
n½v�, is defined as

P0
n½v� ¼

X
i;j

qPn½v�

qvi;j
qi

xq
j
y : ð33Þ



ARTICLE IN PRESS

P.R. Gordoa et al. / Physica A 345 (2005) 35–4740
The same result holds for higher members of the hierarchy, i.e., instead of (18) we
obtain that the second singular manifold equation is

jtnþ1
¼ P0

n½v�j ; ð34Þ

a result that we again prove by induction. Assuming that (34) is true for the tn flow,
i.e., jtn

¼ P0
n�1½v�j, we obtain from (11), with t ¼ tnþ1 and t ¼ tn, that

jtnþ1
¼ ðqx þ

1
2

vxÞjtn
þ 1

2
vtn

jx ¼ T ½vx�P
0
n�1½v�jþ 1

2
Pn�1½v�qxj

¼ ðT ½vx�Pn�1½v�Þ
0j ¼ P0

n½v�j : ð35Þ

We thus obtain that Eqs. (30) and (34) are precisely the singular manifold equations
for the 2 + 1-dimensional Burgers’ hierarchy.

We note in addition that we also have, setting j ¼ vx, the special auto-Bäcklund
transformation of the hierarchy (28),

u ¼ 2 log ðvxÞ þ v ; ð36Þ

and, setting v ¼ 0, the linearization

u ¼ 2 log j ð37Þ

of the hierarchy (28) onto

jtnþ1
¼ qn

xjy : ð38Þ

The first of these is the 2+1-dimensional generalization of the special auto-Bäcklund
transformation (24) of Burgers’ hierarchy, and the second is the 2+1-dimensional
generalization of the Cole–Hopf transformation, for the entire hierarchy.
3. Truncation for the 1 + 1 and 2 + 1-dimensional DWW hierarchies

This section is concerned with the derivation of truncation results for the DWW
hierarchy [15–22] and the corresponding 2+1-dimensional non-isospectral hier-
archy. Truncation results for these hierarchies have not been given before.

We begin with the standard DWW hierarchy, which we take here in the form

Wtn
¼ RnWx; n ¼ 0; 1; . . . ; ð39Þ

where W ¼ ðW ;V Þ
T; R ¼ B2B�1

1 is the recursion operator, and B2 and B1 are two of
the Hamiltonian operators of the DWW hierarchy, given by

B2 ¼ �1
2

2qx qxW

Wqx 2q3
x þ 2Vqx þ Vx

� �
; ð40Þ

and

B1 ¼
0 qx

qx 0

� �
: ð41Þ
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In terms of the Hamiltonian operators B2 and B1 the hierarchy (39) can be expressed
in the form

Wtn
¼ B1Lnþ1½W� ¼ B2Ln½W� ; ð42Þ

where Ln ¼ ðMn;NnÞ
T; L0 ¼ ð0;�2ÞT and L1 ¼ ðV ;W Þ

T.
The first step in our method consists of obtaining truncation results for an

equation of the form

Wt ¼ RWt : ð43Þ

Here we consider the slight generalization

Uxt þ V t þ
1
2
ðUxU tÞx þ gðt; tÞ ¼ 0 ; ð44Þ

Vt þ Uxxxt þ UxtV þ 1
2
ðUxV t þ U tVxÞ ¼ 0 ; ð45Þ

where we have set W ¼ Ux, in order to write the system in local form.
The truncation for the system (44), (45) was performed in Ref. [27]. We summarize

here the results: U and V given by

U ¼ 2 log Z þ u ; ð46Þ

V ¼ 2ðZ�1 þ BZÞx � 4B ; ð47Þ

satisfy the system (44), (45), where Z satisfies the Riccati system

Zx ¼ 1 � AZ � BZ2 ; ð48Þ

Zt ¼ �Ct þ ðACt þ Ct
xÞZ � ðDt � BCtÞZ2 ; ð49Þ

Zt ¼ �Ct þ ðACt þ Ct
xÞZ � ðDt � BCtÞZ2 ; ð50Þ

and the coefficients A; B; Ct; Dt; Ct and Dt are given by

A ¼ �lþ 1
2

ux ; ð51Þ

B ¼ �1
4
ðv � uxxÞ ; ð52Þ

Ct ¼ �lCt þ 1
2

ut ; ð53Þ

Dt ¼ �lDt � 1
4
ðv � uxxÞt ; ð54Þ

lðt; tÞ is a function of integration that satisfies the relation g þ 2ðlt þ lltÞ ¼ 0 and u

and v are solutions of the system (44), (45).
Since we have the relations

Ct ¼ GCt þ ~C; Dt ¼ GDt þ ~D; Gx ¼ 0 ; ð55Þ

we can write the Riccati system (48)–(50) in the form

Zx ¼ 1 � AZ � BZ2 ; ð56Þ

Zt ¼ GZt � ~C þ ðA ~C þ ~CxÞZ � ð ~D � B ~CÞZ2 ; ð57Þ
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where ~C ¼ 1
2

ut; ~D ¼ �1
4
ðv � uxxÞt and G ¼ �l. Imposing now the additional

condition g ¼ 0, the linearization of the above Riccati system provides the Lax
pair for the system (43), together with the non-isospectral condition lt ¼ �llt, and
the truncation (46), (47) is precisely its Darboux transformation.
3.1. Truncation for the DWW hierarchy

We now consider iterating to obtain truncation results for the standard DWW
hierarchy (39). We therefore need, as a starting point for the iteration, the truncation
for the reduction q=qt ¼ q=qx of the system (43) with t ¼ t1, i.e.,

Uxt1 þ V þ
1

2
U2

x

� �
x

¼ 0 ; ð58Þ

Vt1 þ ðUxxx þ UxV Þx ¼ 0 : ð59Þ

This system is the classical Boussinesq system. Truncation for the classical
Boussinesq system has been considered by several different authors, e.g. [22,28,27];
here we will adopt the approach used in Ref. [27].

Under this reduction we have Ct ¼ �1 and Dt ¼ 0, so that

U ¼ 2 log Z þ u ; ð60Þ

V ¼ 2ðZ�1 þ BZÞx � 4B ; ð61Þ

satisfy the system (58), (59), where Z satisfies the Riccati system

Zx ¼ 1 � AZ � BZ2 ; ð62Þ

Zt1 ¼ �Ct1 þ ðACt1 þ Ct1
x ÞZ � ðDt1 � BCt1 ÞZ2 ; ð63Þ

with coefficients

A ¼ �lþ 1
2

ux ; ð64Þ

B ¼ �1
4
ðv � uxxÞ ; ð65Þ

Ct1 ¼ lþ 1
2

ux ; ð66Þ

Dt1 ¼ �1
4
ðv � uxxÞx ; ð67Þ

and where l is now constant.
We now turn to the iteration process. Truncation for the 1+1-dimensional DWW

hierarchy (39) gives the Darboux transformation

W ¼ 2ðlog ZÞx þ w ; ð68Þ

V ¼ 2ðZ�1 þ BZÞx � 4B ; ð69Þ
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with w ¼ ðw; vÞT ¼ ðux; vÞ
T being a second solution of (39), together with the Lax pair

obtained from the linearization of the Riccati system for the tn flow,

Zx ¼ 1 � AZ � BZ2 ; ð70Þ

Ztn
¼ �Ctn þ ðACtn þ Ctn

x ÞZ � ðDtn � BCtn ÞZ2 : ð71Þ

In order to obtain the coefficients of the above Riccati system, it only remains to
iterate in Eqs. (53) and (54). We note that the relation ltn

¼ �lltn�1
gives that l is a

constant for the entire hierarchy.
Let us consider first Eq. (53). We set t ¼ tn and t ¼ tn�1 and iterate to obtain:

Ctn ¼ � lCtn�1 þ 1
2

utn�1
ð72Þ

¼ � lð�lCtn�2 þ 1
2

utn�2
Þ þ 1

2
utn�1

ð73Þ

..

.

¼ ð�lÞn�1Ct1 þ
1

2

Xn

k¼2

ð�lÞn�kutk�1
: ð74Þ

Iterating Eq. (54) we obtain, similarly,

Dtn ¼ � lDtn�1 � 1
4
ðv � uxxÞtn�1

ð75Þ

¼ ð�lÞn�1Dt1 �
1

4

Xn

k¼2

ð�lÞn�k
½vtk�1

� ðuxxÞtk�1
� : ð76Þ

From (42) we obtain utk�1
¼ Nk½w� and vtk�1

¼ qxMk½w�. We also have, from Eqs.
(66) and (67),

Ct1 ¼ lþ 1
2

w ; ð77Þ

Dt1 ¼ �1
4
ðvx � wxxÞ : ð78Þ

Substituting into (74) then gives

Ctn ¼ ð�lÞn�1Ct1 þ
1

2

Xn

k¼2

ð�lÞn�kutk�1
ð79Þ

¼ ð�lÞn�1
ðlþ 1

2
wÞ þ

1

2

Xn

k¼2

ð�lÞn�kNk½w� ð80Þ

¼
1

2

Xn

k¼0

ð�lÞn�kNk½w� ; ð81Þ

where we have used that N0½w� ¼ �2 and N1½w� ¼ w.



ARTICLE IN PRESS

P.R. Gordoa et al. / Physica A 345 (2005) 35–4744
Substituting into Eq. (76) we obtain

Dtn ¼ ð�lÞn�1Dt1 �
1

4

Xn

k¼2

ð�lÞn�k
½vtk�1

� ðuxxÞtk�1
� ð82Þ

¼ � 1
4
ð�lÞn�1

ðvx � wxxÞ �
1

4

Xn

k¼2

ð�lÞn�k
½qxMk½w� � q2

xNk½w�� ð83Þ

¼ �
1

4

Xn

k¼1

ð�lÞn�k
½qxMk½w� � q2

xNk½w�� ; ð84Þ

where we now have also used that M1½w� ¼ v.
Thus we obtain truncation results for entire DWW hierarchy. We see that the

result of the truncation is the recovery of the Lax pair and Darboux transformation
for every member of the DWW hierarchy. These results are new.

3.2. Truncation for the non-isospectral DWW hierarchy

We now consider the derivation of truncation results for the 2 + 1-dimensional
DWW hierarchy

Wtn
¼ RnWy; n ¼ 0; 1; . . . : ð85Þ

Using the same change of variables as before, that is, W ¼ ðUx;V Þ
T, we introduce

the quantities Qk and Pk defined by the relation Rk�1ðUxy;VyÞ
T
¼ ðQk;PkÞ

T, and
take the hierarchy (85) in the form

Ux

V

� �
tn

¼
Qnþ1

Pnþ1

� �
: ð86Þ

The result of the truncation is that

U ¼ 2 log Z þ u ; ð87Þ

V ¼ 2ðZ�1 þ BZÞx � 4B ; ð88Þ

is a solution of (86), where as before

A ¼ �lþ 1
2

ux ; ð89Þ

B ¼ �1
4
ðv � uxxÞ ; ð90Þ

and ðu; vÞ is a second solution of (86). Here Z satisfies the Riccati system

Zx ¼ 1 � AZ � BZ2 ; ð91Þ

Ztn
¼ �Ctn þ ðACtn þ Ctn

x ÞZ � ðDtn � BCtn ÞZ2 ; ð92Þ

Zy ¼ �Cy þ ðACy þ Cy
xÞZ � ðDy � BCyÞZ2 : ð93Þ

We now need to obtain, as for the standard DWW hierarchy, the expressions for the
coefficients Ctn and Dtn , as well as the equation satisfied by the spectral parameter.
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This last is obtained by iteration as

ltn
¼ �lltn�1

¼ � � � ¼ ð�lÞn�1lt1 ¼ ð�lÞnly ; ð94Þ

which then gives the non-isospectral condition for the tn flow (86).
We now turn to the derivation of the expressions for the coefficients in the Riccati

system. Iterating in Eq. (53) we obtain

Ctn ¼ ð�lÞn�1Ct1 þ
1

2

Xn

k¼2

ð�lÞn�kutk�1

¼ ð�lÞn�1
�lCy þ

1

2
uy

� �
þ

1

2

Xn

k¼2

ð�lÞn�kutk�1

¼ ð�lÞnCy þ
1

2

Xn

k¼1

ð�lÞn�kutk�1
; ð95Þ

whereas iteration in Eq. (54) yields

Dtn ¼ ð�lÞn�1Dt1 �
1

4

Xn

k¼2

ð�lÞn�k
½vtk�1

� ðuxxÞtk�1
�

¼ ð�lÞn�1
½�lDy � 1

4
ðvx � wxxÞy� �

1

4

Xn

k¼2

ð�lÞn�k
½vtk�1

� ðuxxÞtk�1
�

¼ ð�lÞnDy �
1

4

Xn

k¼1

ð�lÞn�k
½vtk�1

� ðuxxÞtk�1
� ; ð96Þ

where in these last we have used Eqs. (53) and (54) with t ¼ t1 and t ¼ y, and also
that ut0 ¼ uy and vt0 ¼ vy.

Moreover, using the fact that utk�1
¼ q�1

x Qk and vtk�1
¼ Pk, where now Qk ¼

Qkðu; vÞ and Pk ¼ Pkðu; vÞ, we can write the above expressions for Ctn and Dtn in the
form

Ctn ¼ ð�lÞnCy þ
1

2

Xn

k¼1

ð�lÞn�kq�1
x Qk ; ð97Þ

Dtn ¼ ð�lÞnDy �
1

4

Xn

k¼1

ð�lÞn�k
½Pk � qxQk� : ð98Þ

We note here that, in the reduction to the standard DWW hierarchy, we have
Cy ¼ �1; Dy ¼ 0; Qk ¼ qxNk and Pk ¼ qxMk, and thus we recover the results in
Section 3.1.

We observe that Eqs. (97) and (98) are of the form

Ctn ¼ ĜCy þ Ĉ; Dtn ¼ ĜDy þ D̂; Ĝx ¼ 0 ; ð99Þ
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where Ĝ ¼ ð�lÞn and

Ĉ ¼
1

2

Xn

k¼1

ð�lÞn�kq�1
x Qk ; ð100Þ

D̂ ¼ �
1

4

Xn

k¼1

ð�lÞn�k
½Pk � qxQk� ; ð101Þ

and so we can replace the Riccati system (91), (92), (93) with

Zx ¼ 1 � AZ � BZ2 ; ð102Þ

Ztn
¼ ĜZy � Ĉ þ ðAĈ þ ĈxÞZ � ðD̂ � BĈÞZ2 : ð103Þ

The linearization of this last, together with the non-isospectral condition
ltn

¼ ð�lÞnly, provides the Lax pair for the hierarchy (86); its Darboux
transformation is given by (87), (88). Thus we obtain truncation results for the
2 + 1-dimensional hierarchy; in fact, we see that the result of the truncation is the
recovery of the Lax pair and Darboux transformation for every member of this
hierarchy.
4. Conclusions

We have used our new approach to obtain truncation results for hierarchies in
order to derive such for the 1+1 and 2+1-dimensional versions of both Burgers’
and the dispersive water wave hierarchies. Our results for the 2+1-dimensional
Burgers’ hierarchy, and for the 1+1 and 2+1-dimensional dispersive water wave
hierarchies, are all new. We note that for these last the singular manifold equation
can be obtained using a gauge transformation (see Ref. [27]); however, it is the
derivation, from truncation, of the Lax pair and Darboux transformation for the
entire hierarchy, as given here, that is of most interest. We also note that our
approach is based on the connection between non-isospectral scattering problems
and hierarchies of integrable PDEs, obtained by iteration of the former [11]. That is,
we iterate on (the generalized form of) the truncation for equations of the form
Vt ¼ RVt, for some recursion operator R; iteration on g in (44), (45) is also of course
possible.
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