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The Stochastic Burger’s Equation in Ito’s Sense

By Javier Villarroel

We consider the solution to Burger’s equation coupled to a stochastic noise
in Ito’s sense. The main random properties of the wave are determined.
The solution is related to a deterministic problem with a rescaled diffusion
coefficient. Depending on the value of a parameter, the initial value problem
may be ill posed, well posed up to an explosion time, or well posed for all
time. Traveling waves are destroyed asymptotically by white noise. However,
the only effect of colored noise is to render the wave position random.

1. Introduction

Because the seminal paper by Gardner et al. [1] (see also [2]) opened the
possibility of integrating the well-known Korteweg–deVries (KdV) equation,
the knowledge of “integrable” equations and the physical properties of their
solutions has largely increased, see [3–5]. In [6] the relevant extension of
the method to the multidimensional case was developed and used to find the
solution of the initial value problem (i.v.p.) of the KPI equation. Foremost
among the explicit solutions to these equations are the solitons; these
are localized configurations that conserve shape upon time evolution. The
underlying dynamics, characterized by the absence of asymptotic interaction,
has been considered for long time the prototypical behavior for localized
solutions of integrable equations. Recently, new localized solutions with
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nontrivial dynamics have been found for KPI and other integrable equations
[7, 8]. We note that these solutions regain shape upon interaction, because it
happens with standard solitons.

From a physical perspective a natural question is to determine if localized
solutions are destroyed by the introduction of a stochastic noise ζ (t). In earlier
work [9] it was shown that the KdV equation coupled to the noise ζ (t) ≡ W (t)
in the derivative is still integrable, and that, in the sense of statistical average,
the noise destroys the soliton as t → ∞. Here W (t) stands for the standard
Brownian motion (B.M.) process, i.e., a stochastic process with a Gaussian
distribution centered around the origin and with variance σ 2(t) = t .

In this paper we consider the general solution to another linearizable equation,
namely, the Burgers equation coupled to a stochastic noise ζ (t) in the derivative

∂u

∂t
+ (u − ζ )

∂u

∂z
− α2

2

∂2u

∂z2
= 0 (1)

with initial condition

u(t = 0, z) = ψ(z), (2)

where ψ(z) is a given function and α is a given constant.
Physical white noise corresponds to the formal choice ζ (t) = Ẇ (t). However,

it is well known that W is nowhere differentiable whence it follows that, as it
stands, (1) is meaningless in this case. To overcome this ominous situation,
a consistent theory of stochastic differential equations (SDE) must give a
prescription to deal with this difficulty. Both from a mathematical and physical
point of view the natural choices are the Stratonovitch theory, which obeys
the rules of classical calculus, and Ito’s theory, which does not. The latter
interpretation is considered in this paper.

Equation (1) with the same kind of coupling has been considered in the
paper [10] and interesting statistical averages have been computed. In this
work it appears that, tacitly, the Stratonovitch convention was used.

Corresponding to ζ (t) = W (t), (1) has been studied in [11, 12] and the
asymptotic behavior of the statistical average of some solutions has been
determined. Because the sample paths, or trajectories, of W (t) are continuous,
it follows that in this case the solution u(t, z) can be obtained using the rules of
standard calculus irrespective of which interpretation is taken.

The analysis of the sample paths properties of u(t, z) is beyond the study
developed in [9–12] and has not so far been considered in detail. In particular,
smoothness properties and the relevant densities of the amplitude, position and
“passage times” of the front wave, remain to be determined.

In this paper we show that the solution to the Equation (1) coupled to
nonsmooth noise in the Ito’s context is reduced to that of a deterministic
equation with a modified diffusion coefficient (see Equation (4) below). Thus,
the effect of noise is to add a negative viscosity term, which renders the
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equation less diffusive. This is quite interesting and remains to be explained
from a physical perspective. It would be interesting to determine if a connection
with stochastic stability could be drawn up. For certain types of noise we
can solve the resulting equation with total generality. It is found that any
particular realization is a (random) translation of the unperturbed solution
(see Equation (3)). The solution is continuous but nonsmooth and the time
derivative does not exist in the usual sense. The main properties of the solution
are determined; in particular, the probability density and the mean of the
solution. Although our results apply to general types of noise, for the sake of
being specific we are mostly concerned with white noise.

We find that if α = 1, a shock may develop at a (deterministic) time and at a
random point. If α < 1 the corresponding i.v.p. is found to be ill posed. If
α > 1 the i.v.p. is well posed for all time. Particularly interesting is the case of
the kink or ladder solution. We find that for long times the average effect of
white noise is to flatten the solution through a region with width proportional
to

√
t . For a general class of colored noises the situation is different. As

t → ∞ the random wave may either tend to the unperturbed solution or have
a Gaussian location. This is very interesting; it proves that noise does not
necessarily destroy localized solutions.

Results pertaining to the KP equation coupled to white noise in the derivative
are also found to be equally interesting and will be presented elsewhere.

2. White noise: the method of solution

Consider the i.v.p. for Burger’s equation coupled to white noise within the
framework of Ito’s theory:

∂u

∂t
+ (u − Ẇ (t))

∂u

∂z
− α2

2

∂2u

∂z2
= 0; u(t = 0, z) = ψ(z), (1′)

where α is a constant.
The solution is given by

u(t, z) = g(t, z + W (t)), (3)

where the deterministic function g(t, z) solves

∂g

∂t
+ g

∂g

∂z
− α2 − 1

2

∂2g

∂z2
= 0; g(t = 0, z) = ψ(z). (4)

Remark 1: The above representation shows that the solution is continuous
but nowhere differentiable.

Remark 2: If α > 1 the use of Ito’s theory versus Stratonovitch’s amounts to
the scaling of parameters α2 → α2 − 1 > 0; hence our results are also relevant
under the Stratonovitch interpretation. Note that some statistical averages of
the solution to (1′) in the latter context have been considered in [10] (see also
[13] and [14] for other developments).
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Remark 3: When the noise is not white, a different equation for g is
obtained. We briefly describe this case in Section 5.

Remark 4: To stress the random nature of the solution the notation u(t, z,
ω) is sometimes preferred. Here ω ∈ �, where � is the space of elementary
events on which a probability P is defined. (Actually P is a measure defined
on a σ− field G of subsets of �). In order not to overload the paper we
skip a rigorous mathematical formalism; we refer the interested reader to the
monographs [15–17].)

To prove (3) let X (t) ≡ z + W (t) where we consider z as a parameter. Then
X (t) is one-dimensional B.M. starting from z. Let g(t, z) solve (4) and define
Y (t) = g (t , X (t)). Note that Y (t) satisfies

∂nY

∂zn
= ∂ng(t, x)

∂xn
]x=X (t).

Using Ito’s rule, we find that

∂Y

∂t
=

[
∂g(t, x)

∂t
+ 1

2

∂2g(t, x)

∂x2

]
x=X (t)

+ Ẇ
∂g

∂x

]
x=X (t)

=
[
−g

∂g

∂x
(t, x) + α2

2

∂2g

∂x2
+ Ẇ

∂g

∂x

]
x=X (t)

= −Y
∂Y

∂z
+ α2

2

∂2Y

∂z2
+ Ẇ

∂Y

∂z
.

3. Burger’s equation with α = 1

We consider first the case corresponding to α = 1 in Equation (1′). The solution
is given by (3) where the deterministic function g(t, z) solves the classical
shock-wave equation:

∂g

∂t
+ g

∂g

∂z
(t, z) = 0; g(t = 0, z) = ψ(z). (5)

It follows that

g(t, z) = ψ(z − gt), (6)

which implies that g(t, z) remains constant along characteristic lines: g(t , a +
ψ(a)t) = ψ(a). Points with amplitude ψ(a) travel also with speed ψ(a).
Higher-points in the wave may eventually catch up and overtake those that
have smaller amplitude. Thus the solution has to steepen up to time t e at which
the slope is vertical. In such a case the wave breaks and a shock is developed.
The geometrical loci of the shock is the curve with parametric equations

t = − 1

ψ ′(a)
; z = a − ψ(a)

ψ ′(a)
. (7)
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The smallest such t (if any) is termed explosion time t e. Hence

te ≡
{ −1

infa ψ ′(a) if infa ψ ′(a) < 0

∞ if infa ψ ′(a) ≥ 0.
(8)

We next determine the main statistical properties of u(t, z). The most
important of these is the probability density of u(t, z) defined by P{u(t , z) ∈
dx} = f u(x) dx . Remarkably, it can be evaluated in an explicit way for all
initial data ψ(z). Indeed, assume that for given x there exist m(x) points
ρ1(x), . . . , ρm(x) such that ψ(ρ1(x)) = · · · = ψ(ρm(x)) = x . If x ≡ g(t , z),
(6) yields that there exist m(x) points hj(t , x) = t x + ρ j (x) such that g(t , hj(t ,
x)) = x . Transforming the corresponding probability integral one has that

f u(x) = 1

[2π t]1/2

m(x)∑
j=1

|t + ρ ′
j (x)| exp

[
− (t x + ρ j (x) − z)2

2t

]
. (9)

The mean value µ(t, z) of the random wave u(t, z) is given by

µ(t, z) ≡ 〈u(t, z)〉 = 1

[2π t]1/2

∫
dx g(t, x) exp

[
− (x − z)2

2t

]
(10)

= 1

[2π t]1/2

∫ m(x)∑
j=1

|t + ρ ′
j (x)|x exp

[
− (t x + ρ j (x) − z)2

2t

]
dx . (11)

We note that 〈u(t, z)〉 satisfies the Fokker–Planck equation[
∂

∂t
− 1

2

∂2

∂z2

]
〈u(t, z)〉 =

〈
∂
∂t u(t, z)

〉
lim
t↓0

〈u(t, z)〉 = ψ(z).

Similarly one can compute the average of any function of the wave by

〈F(u(t, z))〉 = 1

[2π t]1/2

∫
dx F(g(t, x)) exp

[
− (x − z)2

2t

]
. (12)

Finally if t1, t2 are two times the correlation function (in time) defined as

K (t1, t2) ≡ 〈u(t1, z)u(t2, z)〉 − 〈u(t1, z)〉〈u(t2, z)〉

can be shown to be given by

K (t1, t2) = 1

2π [(t2 − t1)t1]1/2

∫
dx1 dx2 g(t1, x1)g(t2, x2)

× exp

[
− (x2 − x1 − z)2

2(t2 − t1)
− (x1 − z)2

2t1

]
− µ(t1, z)µ(t2, z). (13)
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To be specific we consider the following example. Suppose that ψ(z) ≡
u(0, z) = z. Using (3) and (6), it follows that

u(t, z) = z + W (t)

1 + t
. (14)

If B is any set on R, (9) yields that

P[u(t, z) ∈ B] = 1 + t

[2π t]1/2

∫
B

exp

[
− ((t + 1)x − z)2

2t

]
dx . (15)

The mean value of the wave’s amplitude is then given by

〈u(t, z)〉 = 1

[2π t]1/2

∫
x

1 + t
exp

[
− (x − z)2

2t

]
dx = z

1 + t
≡ g(t, z). (16)

Finally the variance of the solution and the time correlation function are found as

σu(t, z) ≡ 〈u2(t, z)〉 − 〈u(t, z)〉2 = t

(t + 1)2
, K (t, t2) = min(t2, t1)

(t1 + 1)(t2 + 1)
.

(17)

In this example the solution will never break. Actually the average value
“flattens” with time. As t goes to infinity all moments of the wave vanish.

Although statistical averages provide interesting information on the properties
of the solution, questions of an analytical nature concerning typical realizations
of the wave require a different study. We now discuss some of these properties.
Notice that the solution remains constant along characteristics:

u(t, a − W (t) + ψ(a)t) = u(0, a). (19)

The instant of explosion t e and the explosion point ze can be obtained by
determining the envelope to the family of these characteristic curves. One
finds that t e is given by (8) and

ze = l(te) − W (te) − ψ(l(te))te,

where

l(t) ≡ ψ
′−1

(
−1

t

)
. (20)

This is interesting. If the initial data satisfy infa ψ ′(a) < 0 the solution to (1′)
will develop a shock due to the effect of noise; however the explosion time is
deterministic and is not determined by the noise. Only the breaking point (20)
is random with density

P(ze ∈ dx) = 1

[2π te]1/2
exp

[
− (x − l(te) + ψ(l(te))te)2

2te

]
dx . (21)
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Particularly interesting is the case corresponding to localized initial data.
Assume that ψ(z) is strongly localized around the point z0. For sufficiently
short times the solution remains localized, and the crest of the wave will be
located at the random point

z̃(t) = z0 − W (t) + ψ(z0)t. (22)

Thus, the wave experiences a Brownian motion around the unperturbed position
z0 + ψ(z0) t . The time τ b at which the wave crest first reaches a given point b
satisfies

P[τb ∈ dt] = [2π t3]−1/2|b − z0| exp

[
− (b − z0 − ψ(z0)t)2

2t

]
dt ≡ fτ (t) dt.

(23)
By integration we obtain the probability that the crest of the wave ever reaches
the point b

P(τb < ∞) =
∫ ∞

0
fτ (t) dt =

{
e−2|b−z0|ψ(z0), if b < z0,

1, if b > z0.
(24)

This means that only those points to the right of z0 will be reached with
probability 1, while those located to the left of z0 are attained with a probability
that decreases exponentially with the distance.

A related question is to determine the probability that at a given time t the
wave has already arrived to a point b ≥ z0. Note that this happens iff M ≥ b
where we define the statistical quantity M ≡ maxt ′≤t z̃(t ′). It can be proven
that this probability equals

2

[2π t]1/2

∫ ∞

b
dz

[
exp

[
− (z − z0 − ψ(z0)t)2

2t

]

+ 2ψ(z0) exp[−2ψ(z0)(z − z0)]�

(
z0 − z − ψ(z0)t√

t

)]
, (25)

where � stands for the error function

�(z) ≡ 1

[2π ]1/2

∫ z

−∞
exp

[
− x2

2

]
dx .

All these probabilities are obtained solving a partial differential equation with
certain boundary conditions. Details are left for the Appendix.

As a specific example suppose that ψ(z) = 1/(1 + z2). In this case (6)
amounts to the inversion of a cubic algebraic equation. Nevertheless we can
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determine the most important features of the motion. Using (9) with m(x) = 2,
x ∈ (0, 1) we obtain that if 0 ≤ α ≤ β ≤ 1,

P[α ≤ u(t, z) ≤ β] = 1

[2π t]1/2

∑
±

∫ β

α

e− 1
2t

(
t x−z±

√
1

x−1

)2
∣∣∣∣t ∓ 1

2x
3
2
√

1 − x

∣∣∣∣ dx

(26)
and that

〈u(t, z)〉 = 1

[2π t]1/2

∑
±

∫ 1

0
xe− 1

2t

(
t x−z±

√
1
x −1

)2
∣∣∣∣t ∓ 1

2x
3
2
√

1 − x

∣∣∣∣ dx . (27)

A shock occurs at the time te = 8
9

√
3 and develops from the random point

ze = √
3 − W ( 8

9

√
3). Before the shock regime sets in, i.e., for t � t e, the

random wave is localized around z̃(t) = t − W (t). Thus it moves as B.M. with
drift coefficient 1 starting from the origin.

4. Burgers equation: general case

We consider next the i.v.p. (1′) with α �= 1. The solution is given by (3) and (4).
If α > 1 the Cauchy problem (4) is well posed, while it is ill posed for α < 1.
In the sequel we assume that α > 1. It is well known that g(t, z) is given by

g(t, z) = (1 − α2)
∂

∂z
log

∫ z

−∞
exp

[
− (z − y)2

4νt
− 1

2ν

∫ y

−∞
ψ(y′) dy′

]
dy,

(28)

where ν ≡ α2 − 1
2 . Thus, the effect of considering the noise within the Ito’s

interpretation is to shift the diffusion parameter: α2 → α2 − 1 > 0, and
hence it results in the addition of a negative viscosity term which renders the
equation less diffusive. Hence, upon this transformation, our results are also
relevant under the Stratonovitch interpretation.

Assuming for convenience that g(t, z) is an increasing function of z for
every t, (3) implies that u(t, z) has density

P{u(t, z) ∈ dx} = 1

[2π t]1/2

∂h

∂x
exp

[
− (h(t, x) − z)2

2t

]
dx, (29)

where g (t , h(t , x)) = x . However, this expression is not complete until for
given initial data the evaluation of the quadrature (28) and the inversion of the
resulting function are performed; in contrast, for α = 1, no further steps were
necessary.

The long time limit of the mean of the solution is interesting. With enough
decay on the initial data one has that

lim
t→∞〈u(t, z)〉 = 1

[2π t]1/2

∫
dx lim

t→∞ g(t, x) exp

[
− (x − z)2

2t

]
= 0 (30)

and also 〈u(t , z)〉 = o(1/tn) whenever limt→∞ g(t, x
√

t)tn = 0 uniformly.
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We consider next the behavior of the traveling wave solution of Burger’s
equation, often referred to as the “kink”:

g(t, z) = v − 2µ tanh

[
µ

ν
(z − vt)

]
≡ g(z − vt). (31)

Here v, µ are two constants that we assume to be positive. The derivative of
this solution is a soliton localized along z = vt which also constitutes the front
wave of (30). The corresponding random wave is given by g(z + W (t) − vt).
The front wave position z̃(t) = vt − W (t) is B.M. with drift parameter v. It
follows that z̃(t) and τ b, the first arrival time to the point b, have density

fz̃(t)(x) = 1

[2π t]1/2
exp

[
− (x − vt)2

2t

]
; fτ (t) = |b|

[2π t3]1/2
exp

[
− (b − vt)2

2t

]
.

(32)

By integration we obtain the probability that the wave ever reaches the point b∫ ∞

0
fτ (t) dt =

{
e−2v|b|, if b < 0,

1, if b > 0
(33)

and the corresponding mean values

〈z̃(t)〉 = vt ; 〈τb〉 =
∫ ∞

0
t fτ (t) dt =

{
∞, if b < 0,
b
v
, if b > 0.

(34)

The average effects of white noise for long times have been discussed in [10]
and [12]. Note that in the frame z = vt moving with the unperturbed wave
the amplitude remains constant g(t , z) = v, and so does the time average:
〈u(t , z)〉 = g(t , z) (see [12]). However, one should not be misled into thinking
that the noise has no significant effect on the wave; to substantiate this, note
that on the region

z = vt + x0

√
t, (35)

where x0 is arbitrary, is

lim
t→∞〈u(t, z)〉 − g(t, z)

=
∫ −x0

−∞
+

∫ ∞

−x0

dx

[2π ]1/2
lim

t→∞(g((x + x0)
√

t) − g(t, z))e− x2

2

=




4µ[�(−x0) − 1], x0 < 0,

4µ�(−x0), x0 > 0,

0, x0 = 0,

(36)

which is in general different from zero. Likewise we find that limt→∞〈u(t, z) −
v〉2n+1= − 2µ[1−2�(−x0)], limt→∞〈u(t, z)−v〉2n = −2µ. The interpretation
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of this result is the following. For long times the kink is still centered at the
unperturbed position, but due to the effect of noise it flattens over a region with a
width of order O(

√
t). Thus the effect of white noise is to destroy the kink. This

interpretation is confirmed considering the behavior of the soliton derivative:

−∂u

∂z
(t, z) = 2

µ2

ν
sech2

[
µ

ν
(z + W (t) − vt)

]
. (37)

If z is kept constant it is possible to prove that the soliton decays exponentially;
concretely one obtains that ifv ≥ 2µ

ν
then for allβ, with 0 ≤ β < v2 − (v − 2µ

ν
)2

is

lim
t→∞

√
2π te

β

2

〈
∂u

∂z
(t, z)

〉
= 0. (38)

When v < 2µ

ν
(38) holds for all β, 0 ≤ β < v2 and besides

lim
t→∞

√
2π te

v2 t
2

〈
∂u

∂z
(t, z)

〉
= −2

µ2

ν
evz

∫
dx e−vx sech2

[
µ

ν
x

]
= −2

νvevz

sin πvν
2µ

.

(39)

In contrast, along the trajectory (35) the decay is only rational

lim
t→∞

√
2π t

〈
∂u

∂z
(t, z)

〉
= −2

µ2

ν
e− x2

0
2

∫
dx sech2

[
µ

ν
x

]
= −4µe− x2

0
2 . (40)

This means that due to the effect of noise the soliton spreads over a region
with a width of order O(

√
t). Note that although formula (35) bears some

resemblance to the dynamics of localized solutions of KPI equation [7, 8] the
interpretation is totally different.

5. Burgers equation under other kinds of noise

Next we briefly consider Burger’s equation (1), (2) coupled to an arbitrary
noise ζ (t) ≡ ξ̇ defined by Ito’s SDE

dξ (t)

dt
= a(t, ξ ) + b(t, ξ )

dW (t)

dt
; ξ (0) = ξ0 (41)

where ξ 0 is a constant and a, b : R+ × R → R are given functions.
It is well known that the density f t(x) of ξ (t) is given by

ft (x) = f (t, x | ξ0), (42)
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where f (t , y | x) is a Green’s function for the Fokker–Planck equations:

∂ f (t, y | x)

∂t
= 1

2

∂2

∂y2
(b2(t, y) f (t, y | x)) − ∂

∂y
(a(t, y) f (t, y | x));

lim
t↓0

f (t, y | x) = δ(y − x). (43)

Using Ito calculus one can prove, in a similar way to that described in Section 2,
that the solution is given by u(t , z) = g(t , z + ξ (t)), where g(t, z) solves

∂g

∂t
+ g

∂g

∂z
− α2 − b2(t, z)

2

∂2g

∂z2
= 0; g(t = 0, z) = ψ(z − ξ0). (44)

The solution to the i.v.p (1), (2) is reduced to solving the SDE (41) and the
nonlinear PDE (44). In general, we do not expect that (44) can be solved in a
closed way unless b(t, z) is a constant. In this case it reduces to either the
shock-wave equation when b = α, or to a standard Burgers equation when
b < α.

In this regard, a natural question is to determine the most general election
of the functions a(t, z) and b(t, z) for which (41) is “integrable”. Results in this
direction have been obtained in [18]. We consider here the particular case
corresponding to a generalized Ornstein–Uhlenbeck process or (colored) noise
ζ (t) ≡ ξ̇ for which a(t , y) = −γ (t)y, b(t , y) = 1, ξ 0 = 0. Here γ (t) > 0 is a
given function of time. One can solve (43), (44) to find

f (t, y | x) = 1√
2π�2

exp

[
− (y − xe−�(t))2

�2(t)

]
, (45)

�(t) ≡
∫ t

t0

γ (s) ds; �2(t) ≡ e−2�(t)
∫ t

t0

e2�(s) ds (46)

and u(t , z) = g(t , z + ξ (t)) where g(t, z) solves (4).
When γ is a constant we recover the classical Ornstein–Uhlenbeck process;

unlike the B.M., this process converges to a Gaussian variable ξ∞ with zero
mean and variance 1

2γ
as t → ∞. It follows that u(t, z) is also convergent to a

well defined random variable g(∞, z + ξ∞). In particular one obtains the
following. As t → ∞ the kink u(t, z) converges to a random variable:

u(t, z) ≡ v − 2µ tanh

[
µ

ν
(z + ξ (t) − vt)

]
→

t→∞v − 2µ tanh
µ

ν
[z − vt + ξ∞].

(47)
Hence asymptotically the front wave has a random position z̃∞(t) = vt − ξ∞
which is normally distributed N (vt, 1

2γ
), but the kink does not get destroyed.

In addition, in the frame moving with the wave

〈uz(t, z)〉 → − 2µ2

ν
√

π

∫
dx exp[−γ x2]sech2 µ

ν
x �= 0 (48)
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and

〈u(t, z)〉 → v − 2µ
√

γ

[π ]1/2

∫
dx exp[−γ x2] tanh

µ

ν
x . (49)

The above analysis can be extended to general γ (t) by evaluating the limit
of the distribution (45). We find the following. If l ≡ limt→∞ γ (t) = 0, then
ξ (t) does not converge as t → ∞ and neither will u(t, z). If 0 < l < ∞, ξ (t)
converges to a Gaussian variable ξ∞ = N (0, 1

2l ) and u(t , z) → g(t , z + ξ∞).
Hence asymptotically the front wave of the kink has too a Gaussian position
z̃∞(t) = vt − ξ∞ = N (vt, 1

2l ).
If l = ∞ then ξ (t) converges to zero and u(t, z) converges to the unperturbed

solution: u(t , z) → g(t , z) located at z̃∞(t) = vt . This is remarkable; it means
that if the dissipation term of the noise is sufficiently strong, the random wave
will tend to the unperturbed solution g(t, z).

Appendix

Let X (t) ≡ W (t) + vt be a Brownian motion with drift coefficient v for which
an absorbing barrier has been placed at the point x = b. If τ b is the first passage
time to b, this means that X (t) = b for all t ≥ τ b. Then it is known (see [16])
that its density f̃ (t, x) solves the following Dirichlet boundary problem:(

∂

∂t
− 1

2

∂2

∂x2
+ v

∂

∂x

)
f̃ (t, x) = 0; lim

t↓0
f̃ (t, x) = δ(x)

f̃ (t, −∞) = f̃ (t, x = b) = 0.

To solve this equation define f̃ (t, x) = exp(vx − v2

2 t)ψ(t, x) where we have(
∂

∂t
− 1

2

∂2

∂x2

)
ψ(t, x) = 0; ψ(0, x) = δ(x); ψ(t, −∞) = ψ(t, b) = 0.

Solving via Laplace transforms, it follows that

ψ(t, x) = [2π t]−1/2

[
exp

(
− x2

2t

)
− exp

[
− (x − 2b)2

2t

]

and

f̃ (t, x) = [2π t]−1/2

[
exp

[
− (x − vt)2

2t
− exp

[
− (x − 2b − vt)2 − 4vtb

2t

]
.

Note next the obvious fact:

1 = P(Xt < b) + P(Xt = b) =
∫ b

−∞
f̃ (t, x) dx + P{τb ≤ t},
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which implies by differentiation that

fτ (t) = −
∫ b

−∞

∂

∂t
f̃ (t, x) dx =

∫ b

−∞

(
−1

2

∂2

∂x2
+ v

∂

∂x

)
f̃ (t, x) dx

= v f̃ (t, b) − 1

2

∂ f̃

∂x
(t, b) = [2π t3]−1/2|b| exp

[
− (b − vt)2

2t

]
.

To determine the density of M(t) ≡ maxt ′≤t z(t ′) we note that M(t) ≥ b ⇔
τ b ≤ t ; hence

P{M ≥ b} = P{τb ≤ t} = 1 −
∫ b

−∞
f̃ (t, x) dx .

If f M (b) stands for the relevant density we have that

fM (b) ≡ − ∂

∂b
P{M ≥ b} = −

∫ b

−∞

∂

∂b
f̃ (t, x) dx .

The result follows after a tedious quadrature.
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