KILLED RANDOM PROCESSES AND HEAT KERNELS

J. Villarroel*

Let $V(x) \geq 0$ be a given function tending to a constant at infinity. It is well known that the density of the Brownian motion B_{t} killed at the infinitesimal rate V is a Green's function for the heat operator with such a potential. With an appropriate generalization, its Laplace transform also gives the density of $\int_{0}^{t} V\left(B_{s}\right) d s$. We construct such a Green's function via spectral analysis of the classical one-dimensional stationary Schrödinger operator.

Keywords: Brownian motion, heat equation propagator

1. Brownian motion and killing

In this introductory section, we recall several well-known aspects of the classical theory of the Brownian motion (BM) B_{t} (see [1] for more details). We are interested in certain aspects of the theory where the Green's function $G\left(t, x \mid t^{\prime}, x^{\prime}\right) \equiv G\left(t-t^{\prime}, x \mid x^{\prime}\right)$ for the heat operator with a negative "time-independent" potential, i.e.,

$$
\begin{equation*}
L G \equiv\left(-\partial_{t}+\partial_{x x}-V(x)\right) G\left(t, x \mid t^{\prime}, x^{\prime}\right)=-\delta\left(t-t^{\prime}\right) \delta\left(x-x^{\prime}\right) \tag{1}
\end{equation*}
$$

plays a crucial role. The construction of this propagator and its relation to the spectral analysis of the classical one-dimensional stationary Schrödinger operator is considered in Sec. 2. Assuming that $V(x)$ tends to a constant as $|x| \rightarrow \infty$, we show how to implement this construction. In Sec. 3, we give a concrete construction of $G\left(t, x \mid t^{\prime}, x^{\prime}\right)$ when $V(x)$ corresponds to the simplest reflectionless potential of the Schrödinger operator.

We recall that BM is a stochastic process B_{t} that models a random walk, i.e., it describes the erratic motion of a particle that can move to the right or left with equal probability at each instant. Here, $B_{t} \equiv B_{t}(\omega)$ represents the position at time t of the Brownian traveler. If motion starts at $x^{\prime}: B_{0}=x^{\prime}$ and is assumed to be isotropic and homogeneous in space and time, then B_{t} has the density given by the classical heat kernel

$$
P\left(B_{t} \in[x, x+d x)\right)=\frac{1}{\sqrt{4 \pi t}} \exp \left[-\frac{\left(x-x^{\prime}\right)^{2}}{4 t}\right] d x
$$

Equation (1) arises as follows. In addition, we suppose that a random killing mechanism is introduced such that B_{t} "disappears" at a random time τ or, more precisely, attains a (new) death state ∂. We call the resulting process $\widehat{B}_{t}=\partial \theta(t-\tau)+B_{t} \theta(\tau-t)$ the BM with killing $\widehat{B}_{t} \in \mathbb{R} \cup\{\partial\}$ (or KBM). Let $\varphi(t) \equiv P\left(\widehat{B}_{t} \neq \partial\right)$ be the probability that \widehat{B}_{t} survives up to time t. We suppose that given that $\widehat{B}_{t}=x \in \mathbb{R}$ (\widehat{B}_{t} took a value x and hence has not yet been killed), the probability of being killed at any time $t+h>t$ is $o(h)$; concretely,

$$
\begin{equation*}
P\left(\widehat{B}_{t+h} \neq \partial \mid \widehat{B}_{t}=x\right)=1-V(x) h+o(h) . \tag{2}
\end{equation*}
$$

*Facultad de Ciencias, Universidad de Salamanca, Pza Merced sn, 37008 Salamanca, Spain, e-mail: javier@usal.es.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 144, No. 2, pp. 423-432, August, 2005.

Of course, $P\left(\widehat{B}_{t+h} \neq \partial \mid B_{t}=\partial\right)=0$. Therefore, $V(x) \geq 0$ is the infinitesimal rate of killing of the Brownian particle. The former rules define the killing mechanism and by the total probability theorem imply that

$$
\begin{equation*}
P\left(\widehat{B}_{t} \neq \partial\right)=\exp \left\{-\int_{0}^{t} V\left(B_{s}\right) d s\right\} \tag{3}
\end{equation*}
$$

Indeed, we have

$$
P\left(\widehat{B}_{t+h} \neq \partial\right)=P\left(\widehat{B}_{t+h} \neq \partial \mid \widehat{B}_{t} \neq \partial\right) P\left(\widehat{B}_{t} \neq \partial\right)+P\left(\widehat{B}_{t+h} \neq \partial \mid \widehat{B}_{t}=\partial\right) P\left(\widehat{B}_{t}=\partial\right)
$$

Hence,

$$
\varphi(t+h)=\varphi(t)\left(1-V\left(B_{t}\right) h\right)+o(h)
$$

and letting $h \rightarrow 0$, we obtain the differential equation with the initial condition

$$
\frac{d \varphi}{d t}=-\varphi(t) V\left(B_{t}\right), \quad \varphi(0)=1
$$

and path integral (3) is recovered.
Given that $B_{0}=x^{\prime}, \operatorname{KBM} \widehat{B}_{t}$ is then determined by giving the density

$$
\begin{equation*}
P\left(\widehat{B}_{t} \in[x, x+d x)\right)=P\left(B_{t} \in[x, x+d x), \tau>t\right) \equiv f\left(t, x \mid x^{\prime}\right) d x \tag{4}
\end{equation*}
$$

and the distribution of the death time

$$
\begin{equation*}
P(\tau \leq t)=1-P\left(\widehat{B}_{t} \neq \partial\right)=1-\int_{\mathbb{R}} f\left(t, x \mid x^{\prime}\right) d x \tag{5}
\end{equation*}
$$

This density is recovered by the classical Feynman-Kac formula of probability and quantum mechanics establishing that the kernel $f\left(t, x \mid x^{\prime}\right)$ of path integral (3) is a solution of (1): $L f\left(x, t \mid x^{\prime}\right)=\delta(t) \delta\left(x-x^{\prime}\right)$. In particular, if $V(x)=b^{2}$, then we have

$$
\begin{aligned}
& f\left(x, t \mid x^{\prime}\right)=\frac{e^{-b^{2} t-\left(x-x^{\prime}\right)^{2} /(4 t)}}{\sqrt{4 \pi t}} \theta(t), \quad P(\tau \leq t)=1-e^{-b^{2} t} \\
& P\left(B_{t} \text { is killed in finite time }\right)=\lim _{t \rightarrow \infty} P(\tau \leq t)=1
\end{aligned}
$$

and the Brownian traveler is killed in a finite time with certainty.
These ideas find an interesting application in the problem of determining the density $\pi\left(t, z \mid x^{\prime}\right) d z \equiv$ $P\left(Z_{t} \in d z\right)$ of the integrated process $Z_{t} \equiv \int_{0}^{t} V\left(B_{s}\right) d s$ given the initial values $B_{0}=x^{\prime}$ and $Z_{0}=0$. For this, given $V(x)$, we consider the family $\widetilde{V}(x ; p) \equiv p V(x)$ of killing functions indexed by the positive parameter $p \geq 0$. Let $\widehat{B}_{t}^{p)}$ be the corresponding KBM and $f\left(t, x ; p \mid x^{\prime}\right)$ be its density: $P\left(\widehat{B}_{t}^{p)} \in[x, x+d x)\right) \equiv$ $f\left(t, x ; p \mid x^{\prime}\right) d x$. The total probability theorem gives

$$
\begin{equation*}
P\left(\widehat{B}_{t}^{p)} \neq \partial\right)=\exp \left\{-p \int_{0}^{t} V\left(B_{s}\right) d s\right\}=\int_{0}^{\infty} e^{-p z} \pi\left(t, z \mid x^{\prime}\right) d z \tag{6}
\end{equation*}
$$

It follows from (5) and (6) that

$$
\zeta\left(t ; p \mid x^{\prime}\right)=\int f\left(t, x ; p \mid x^{\prime}\right) d x=\int_{0}^{\infty} e^{-p z} \pi\left(t, z \mid x^{\prime}\right) d z
$$

Inverting the Laplace transform, we have

$$
\begin{equation*}
\pi\left(t, z \mid x^{\prime}\right)=\frac{1}{2 \pi i} \int_{\Gamma} \zeta\left(t ; p \mid x^{\prime}\right) e^{p z} d p \tag{7}
\end{equation*}
$$

where Γ is the classical Bromwich contour running along a line parallel to the imaginary axis that leaves all singularities of $\zeta\left(t ; p \mid x^{\prime}\right)$ in the complex p plane to the left.

But complete information about the correlated pair $\left(B_{t}, Z_{t}\right)$ requires its joint density $\Pi\left(t, x, z \mid x^{\prime}\right)$ defined by $\Pi\left(t, x, z \mid x^{\prime}\right) d x d z \equiv P\left(B_{t} \in[x, x+d x), Z_{t} \in[z, z+d z)\right)$. Similarly as above, we can prove that

$$
\begin{equation*}
\Pi\left(t, x, z \mid x^{\prime}\right)=\frac{1}{2 \pi i} \int_{\Gamma} f\left(t, x ; p \mid x^{\prime}\right) e^{p z} d p \tag{8}
\end{equation*}
$$

Again appealing to the Feynman-Kac formula, we find that $f\left(t, x ; p \mid x^{\prime}\right)$ solves (1) with the potential $\widetilde{V}(x ; p) \equiv p V(x):$

$$
\left(-\partial_{t}+\partial_{x x}-p V(x)\right) f\left(t, x ; p \mid x^{\prime}\right)=-\delta\left(t-t^{\prime}\right) \delta\left(x-x^{\prime}\right)
$$

The problem of determining the statistical distribution of $\int_{0}^{t} V\left(B_{s}\right) d s$ thus reduces to obtaining the density of the KBM with the potential $p V(x)$. As we now see, this is generally a difficult problem interwoven with classical spectral analysis for the one-dimensional stationary Schrödinger operator.

2. Determining the density of a killed $B M$ and heat propagators

We now show how to determine the density of the KBM for a certain class of potentials. We assume that the function $V(x)$ satisfies $V(x) \geq 0$ and that $V(x) \equiv b^{2}-u(x)$ where b is a certain constant and $u(x)$ satisfies

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} u(x)=0, \quad \int(1+|x|)|u(x)| d x<\infty \tag{9}
\end{equation*}
$$

We find that the Green's function is constructed in terms of eigenfunctions of the one-dimensional Schrödinger operator $A\left(x, \partial_{x}\right) \equiv \partial_{x x}+k^{2}+u(x)$, where $k \equiv k_{R}+i k_{I} \in \mathbb{C}$ is a complex parameter (the identification $b=k_{I}$ is used later). We follow [2], where these ideas are developed in the context of the classical Kadomtsev-Petviashvili equation

$$
\left(u_{t}+u_{x x x}+6 u u_{x}\right)_{x}+3 u_{y y}=0
$$

(we note that some preliminary work in this regard also appeared in [3]). We first recall several basic facts about the spectral theory of the former operator (see [4], [5]) for more details).

Let $\phi_{ \pm}(x, k)$ and $\psi_{ \pm}(x, k)$ be eigenfunctions of the stationary Schrödinger operator,

$$
\begin{equation*}
A\left(x, \partial_{x}\right) \phi_{ \pm}(x, k)=A\left(x, \partial_{x}\right) \psi_{ \pm}(x, k)=0 \tag{10}
\end{equation*}
$$

satisfying the conditions

$$
\begin{equation*}
\phi_{ \pm}(x, k)=e^{\mp i k x}, \quad x \rightarrow-\infty, \quad \psi_{ \pm}(x, k)=e^{\mp i k x}, \quad x \rightarrow \infty \tag{11}
\end{equation*}
$$

If $u(x)$ satisfies condition (9), then the former functions exist and are analytic functions of $k \equiv k_{R}+i k_{I}$ on $\mathbb{C}_{ \pm}$(the upper and lower k half-planes) with limits at the boundary $\left\{k_{I}=0\right\}$ and related by

$$
\begin{equation*}
\phi_{+}(x, k)=a(k) \psi_{-}(x, k)+b(k) \psi_{+}(x, k), \quad k \in \mathbb{R} \tag{12}
\end{equation*}
$$

for certain functions $a(k)$ and $b(k)$ (see [5]), where $a(k)$ is an analytic function of k on \mathbb{C}_{+}having a finite set $\left\{k_{j} \equiv i \kappa_{j}, \kappa_{j} \in \mathbb{R}^{+}\right\}_{j=1, \ldots, N}$ of (simple) zeroes. It turns out that $\phi_{+}(x, k)$ and $\psi_{+}(x, k)$ are proportional at these points: $\phi_{+}\left(x, k_{j}\right)=\beta_{j} \psi_{+}\left(x, k_{j}\right)$, where β_{j} is some complex constant. This along with (11) implies that $\phi_{+}\left(x, k_{j}\right)$ and $\psi_{+}\left(x, k_{j}\right)$ decay exponentially. The reflection coefficient $\rho(k) \equiv b / a(k)$, the "norming" constants β_{j}, and the zeroes $\left\{k_{j} \equiv i \kappa_{j}, \kappa_{j} \in \mathbb{R}^{+}: a\left(k_{j}\right)=0\right\}_{j=1, \ldots, N}$ are the continuous and discrete scattering data of the one-dimensional Schrödinger operator, and $\psi_{j}(x) \equiv \psi_{+}\left(x, k_{j}\right)$ are the eigenfunctions of the discrete spectrum.

Let the continuous and discrete parts of the Green's function be

$$
\begin{align*}
G_{\mathrm{c}}\left(t, x \mid x^{\prime}\right) & =\frac{\theta(t)}{2 \pi} \lim _{L \rightarrow \infty} \int_{-L}^{L} e^{-t\left(l^{2}+2 i k_{I} l\right)} g\left(x, x^{\prime}, l+i k_{I}\right) d l \tag{13}\\
G_{\mathrm{d}}\left(t, x \mid x^{\prime}\right) & =i \sum_{\kappa_{j} \geq k_{I}} e^{\left(-k_{I}^{2}+\kappa_{j}^{2}\right) t} g_{j}\left(x, x^{\prime}\right) \theta(-t) \tag{14}
\end{align*}
$$

where we define $g\left(x, x^{\prime}, k\right)$ on \mathbb{C}_{+}as

$$
\begin{equation*}
g\left(x, x^{\prime}, k\right) \equiv \frac{\phi_{+}(x, k) \psi_{+}\left(x^{\prime}, k\right)}{a_{+}(k)}, \quad k_{I}>0 \tag{15}
\end{equation*}
$$

Finally, the Green's function is taken to be

$$
\begin{equation*}
G\left(t, x \mid x^{\prime}\right)=G_{\mathrm{c}}\left(t, x \mid x^{\prime}\right)+G_{\mathrm{d}}\left(t, x \mid x^{\prime}\right) \tag{16}
\end{equation*}
$$

The following result gives the main properties of these objects.
Proposition 1. The function $g\left(x, x^{\prime}, k\right)$ exists and is a meromorphic function on the upper half-plane \mathbb{C}_{+}with poles at the zeroes k_{j} of $a(k)$ and the residues

$$
\operatorname{Res} g\left(x, x^{\prime}, k\right)_{k=k_{j}}=g_{j}\left(x, x^{\prime}\right) \equiv C_{j} \psi_{j}(x) \psi_{j}\left(x^{\prime}\right), \quad C_{j} \equiv \frac{\beta_{j}}{a^{\prime}\left(k_{j}\right)}
$$

As $|k| \rightarrow \infty, g\left(x, x^{\prime}, k\right)$ has the asymptotic expansion

$$
\begin{equation*}
g\left(x, x^{\prime}, k\right)=e^{-i k\left(x-x^{\prime}\right)} \tilde{g}\left(x, x^{\prime}, k\right), \quad \tilde{g}\left(x, x^{\prime}, k\right) \equiv 1+\sum_{n=1}^{\infty} \frac{m_{n}\left(x, x^{\prime}\right)}{k^{n}} \tag{17}
\end{equation*}
$$

where the coefficients are uniformly bounded.
We are now prepared for the fundamental result.
Theorem 1. The function $G\left(t, x \mid x^{\prime}\right)$ is a Green's function for the heat operator L with the potential $V(x)=k_{I}^{2}-u(x):$

$$
\begin{equation*}
L G \equiv\left(-\partial_{t}+\partial_{x x}-k_{I}^{2}+u(x)\right) G=-\delta(t) \delta\left(x-x^{\prime}\right) \tag{18}
\end{equation*}
$$

Proof. By direct derivation, we find that

$$
\begin{aligned}
L G_{\mathrm{C}}= & \frac{\theta(t)}{2 \pi} \lim _{L \rightarrow \infty} \int_{-L}^{L} e^{-t\left(l^{2}+2 i k_{I} l\right)}\left[\partial_{x x}+\left(l+i k_{I}\right)^{2}+u(x)\right] g\left(x, x^{\prime}, l+i k_{I}\right) d l- \\
& -\frac{\delta(t)}{2 \pi} \int_{\mathbb{R}} e^{-t\left(l^{2}+2 i k_{I} l\right)} g\left(x, x^{\prime}, l+i k_{I}\right) d l .
\end{aligned}
$$

In view of (10), the first term vanishes identically. Therefore,

$$
L G_{\mathrm{C}}=-\frac{\delta(t)}{2 \pi} \lim _{L \rightarrow \infty} \int_{-L}^{L} g\left(x, x^{\prime}, l+i k_{I}\right) d l=-\delta(t)\left(\delta\left(x-x^{\prime}\right)+i \sum_{\kappa_{j} \geq\left|k_{I}\right|} g_{j}\left(x, x^{\prime}\right)\right) .
$$

This last equality is a deep result, which we do not prove here, regarding the completeness of the eigenfunctions of the Schrödinger operator. moreover, we trivially have

$$
L G_{\mathrm{d}}=i \delta(t) \sum_{\kappa_{j} \geq\left|k_{I}\right|} g_{j}\left(x, x^{\prime}\right)
$$

The analyticity properties of $g\left(x, x^{\prime}, l\right)$ can be used to derive another interesting, more useful representation of the Green's function. We obtain the following result.

Result 1. The Green's function for the operator L in (18) can also be written as

$$
\begin{align*}
G\left(t, x \mid x^{\prime}\right)= & i \sum_{\kappa_{j} \geq k_{I}} e^{\left(\kappa_{j}^{2}-k_{I}^{2}\right) t} g_{j}\left(x, x^{\prime}\right) \theta(-t)+ \\
& +\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-t\left(l^{2}+k_{I}^{2}\right)} g\left(x, x^{\prime}, l\right) d l-i \sum_{k_{I}>\kappa_{j}} e^{\left(\kappa_{j}^{2}-k_{I}^{2}\right) t} g_{j}\left(x, x^{\prime}\right)\right] \theta(t) \tag{19}
\end{align*}
$$

Proof. We consider Cauchy integral (13). The corresponding integral in the Green's function can be transformed such that the integration is over the real axis. For this, we consider a rectangular integration contour Γ_{L} taken in the clockwise sense with vertices at the points $v_{1}, v_{2}, v_{3}, v_{4} \in \mathbb{C}_{+}$on the complex upper half-plane where

$$
v_{1}=-L, \quad v_{2}=L, \quad v_{3}=L+i k_{I}, \quad v_{4}=-L+i k_{I}
$$

The contribution of the integrals over the vertical sides is proportional to

$$
\frac{1}{2 \pi} \int_{0}^{k_{I}} e^{-t\left((L+i s)^{2}+k_{I}^{2}\right)} e^{-i(L+i s)\left(x-x^{\prime}\right)} d s
$$

which tends to zero as $L \rightarrow \infty$. We recall that $g(k)$ is meromorphic on \mathbb{C}_{+}. Hence, Cauchy's theorem gives

$$
\begin{aligned}
\lim _{L \rightarrow \infty} \int_{-L}^{L} e^{-t\left(l^{2}+k_{I}^{2}\right)} g\left(x, x^{\prime}, l\right) & d l-\lim _{L \rightarrow \infty} \int_{-L}^{L} e^{-t\left(l^{2}+2 i k_{I} l\right)} g\left(x, x^{\prime}, l+i k_{I}\right) d l= \\
= & \lim _{L \rightarrow \infty} \int_{\Gamma_{L}} e^{-t\left(z^{2}+k_{I}^{2}\right)} g\left(x, x^{\prime}, z\right) d z=2 \pi i \sum_{k_{I}>\kappa_{j}} e^{\left(\kappa_{j}^{2}-k_{I}^{2}\right) t} g_{j}\left(x, x^{\prime}\right)
\end{aligned}
$$

This amounts to the claim.
We note that the Green's function has the interesting property that it vanishes exponentially fast as either $|t|$ or $|x|$ tends to ∞; in particular, $G_{\mathrm{c}}\left(t, x \mid x^{\prime}\right)$ has an asymptotic expansion with the leading term given by

$$
\begin{equation*}
G_{\mathrm{c}}\left(t, x \mid x^{\prime}\right) \approx e^{-\left(k_{I}^{2}+l_{0}^{2}\right) t} \frac{g\left(x, x^{\prime},-i l_{0}\right)}{\sqrt{4 \pi t}} \theta(t)+i\left(\sum_{\kappa_{j} \leq\left|l_{0}\right|}-\sum_{\kappa_{j}<k_{I}}\right) g_{j}\left(x, x^{\prime}\right) e^{\left(\kappa_{j}^{2}-k_{I}^{2}\right) t} \theta(t) \tag{20}
\end{equation*}
$$

as $|t| \rightarrow \infty$ with $\left(x-x^{\prime}\right) /(2 t) \equiv l_{0}$ fixed.

3. The Green's function for reflectionless potentials

We next consider the case of reflectionless potentials characterized by $\rho(k)=0$. The simplest of such potentials is the one-bound-state Bargmann potential (or soliton potential) given by

$$
u(x)=\frac{2 \kappa^{2}}{\cosh ^{2} \kappa\left(x-x_{0}\right)}
$$

where κ and x_{0} are constants. It is well known that the spectral data for this potential consist of just one zero (eigenvalue) $k_{1}=i \kappa$ and the norming constant $C_{1} \equiv 2 i \kappa e^{2 \kappa x_{0}}$. The eigenfunction of the discrete spectrum is

$$
\psi_{1}(x)=\psi_{+}\left(x, k_{1}\right)=\frac{e^{-\kappa x_{0}}}{\cosh \kappa\left(x-x_{0}\right)}
$$

The wave functions are

$$
\psi_{+}(x,-k)=\psi_{-}(x, k)=\frac{\phi_{+}(x, k)}{a(k)}=e^{-i k x}\left(1+\frac{C_{1} e^{-\kappa x}}{k-i \kappa} \psi_{1}(x)\right)
$$

We hence have

$$
\begin{equation*}
g\left(x, x^{\prime}, k\right)=e^{i k\left(x^{\prime}-x\right)}\left(1+g_{1}\left(x, x^{\prime}\right)\left(\frac{e^{\kappa\left(x^{\prime}-x\right)}}{k-i \kappa}-\frac{e^{-\kappa\left(x^{\prime}-x\right)}}{k+i \kappa}\right)\right) \tag{21}
\end{equation*}
$$

and the Green's function involves the evaluation of integral (19). We note that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{\left.-t l^{2}+i l\left(x^{\prime}-x\right)\right)}}{l-i \kappa} d l=2 \pi i e^{\kappa^{2} t-\kappa\left(x^{\prime}-x\right)} \Phi\left(\frac{x^{\prime}-x}{\kappa \sqrt{2 t}}-\kappa \sqrt{2 t}\right) \tag{22}
\end{equation*}
$$

where we define

$$
\Phi(x) \equiv \int_{-\infty}^{x} e^{-z^{2} / 2} \frac{d z}{\sqrt{2 \pi}}
$$

We find that

$$
\begin{align*}
G\left(t, x \mid x^{\prime}\right)= & \frac{e^{-k_{I}^{2} t-\left(x-x^{\prime}\right)^{2} /(4 t)}}{\sqrt{4 \pi t}} \theta(t)+\frac{2 \kappa e^{\left(\kappa^{2}-k_{I}^{2}\right) t}}{\cosh \kappa\left(x-x_{0}\right) \cosh \kappa\left(x^{\prime}-x_{0}\right)} \times \\
& \times\left[\left(\Phi\left(\frac{x^{\prime}-x}{\sqrt{2 t}}+\kappa \sqrt{2 t}\right)-\Phi\left(\frac{x^{\prime}-x}{\sqrt{t}}-\kappa \sqrt{2 t}\right)\right) \theta(t)+1_{\left\{k_{I} \leq \kappa\right\}}\right] \tag{23}
\end{align*}
$$

where we introduce

$$
1_{\left\{k_{I} \leq \kappa\right\}}= \begin{cases}1, & k_{I} \leq \kappa \\ 0, & k_{I}>\kappa\end{cases}
$$

It turns out that this construction generalizes to the case of reflectionless potentials. We suppose that $u(x)$ is an N-soliton potential, i.e., that $\rho(k)=0$ and $a(k)$ has N zeroes with norming constants C_{j}, $j=1, \ldots, N$. Then

$$
\begin{align*}
G\left(t, x \mid x^{\prime}\right)= & \frac{e^{-k_{I}^{2} t-\left(x-x^{\prime}\right)^{2} /(4 t)}}{\sqrt{4 \pi t}} \theta(t)+i \sum_{j} g_{j}\left(x, x^{\prime}\right) e^{\left(\kappa_{j}^{2}-k_{I}^{2}\right) t} \times \\
& \times\left[\left(\Phi\left(\frac{x^{\prime}-x}{\sqrt{2 t}}-\kappa_{j} \sqrt{2 t}\right)-\Phi\left(\frac{x^{\prime}-x}{\sqrt{2 t}}+\kappa_{j} \sqrt{2 t}\right)\right) \theta(t)+1_{\left\{k_{I} \leq \kappa_{j}\right\}}\right] \tag{24}
\end{align*}
$$

If $x^{2}+x^{\prime 2}+t^{2} \rightarrow \infty$ with $\left(x^{\prime}-x\right) / t \rightarrow l_{0}$, then

$$
\frac{x^{\prime}-x}{\sqrt{2 t}}-\kappa \sqrt{2 t} \rightarrow \pm \infty \quad \text { if } \pm\left(l_{0}-\kappa\right)>0
$$

and hence

$$
\Phi\left(\frac{x^{\prime}-x}{\sqrt{2 t}}-\kappa \sqrt{2 t}\right)-\Phi\left(\frac{x^{\prime}-x}{\sqrt{2 t}}+\kappa \sqrt{2 t}\right)_{x^{2}+x^{\prime 2}+t^{2} \rightarrow \infty}-1_{\left\{-\kappa<l_{0}<\kappa\right\}}
$$

where

$$
-1_{\left\{-\kappa<l_{0}<\kappa\right\}} \equiv-\theta\left(\kappa-l_{0}\right) \theta\left(l_{0}+\kappa\right)=1_{\left\{\kappa \leq\left|l_{0}\right|\right\}}-1=1_{\left\{\kappa \leq\left|l_{0}\right|\right\}}-1_{\left\{\kappa<k_{I}\right\}}-1_{\left\{\kappa \geq k_{I}\right\}}
$$

in exact agreement with formula (20).
The density $f\left(t, x \mid x^{\prime}\right)$ of the KBM with the killing rate $V(x)=b^{2}-u(x) \geq 0$ is recovered from the above ideas. We recall that $f\left(t, x \mid x^{\prime}\right)$ is interpreted as the density of the position of B_{t} with the killing time greater than t. Further, it solves (18) with the identification $b=k_{I}$. We determine it in the case of the one-soliton potential

$$
\begin{equation*}
V(x)=b^{2}-u(x), \quad u(x)=\frac{2 \kappa^{2}}{\cosh ^{2} \kappa x} \tag{25}
\end{equation*}
$$

where b and κ are constants and $b^{2} \geq 2 \kappa^{2}$ (by translational invariance, a further constant could be added). We have the following result.

Result 2. Let a Brownian motion start at x^{\prime}, with the killing rate given by (25). Then the probability that it has not yet been killed at the time $t>0$ and is located in the interval $[x, x+d x)$ is $P\left(B_{t} \in\right.$ $[x, x+d x), \tau>t)=f\left(t, x \mid x^{\prime}\right) d x$, where

$$
\begin{equation*}
f\left(t, x \mid x^{\prime}\right)=\frac{e^{-b^{2} t-\left(x-x^{\prime}\right)^{2} /(4 t)}}{\sqrt{4 \pi t}}+\frac{2 \kappa e^{\left(\kappa^{2}-b^{2}\right) t}}{\cosh \kappa x \cosh \kappa x^{\prime}}\left(\Phi\left(\frac{x^{\prime}-x}{\sqrt{2 t}}-\kappa \sqrt{2 t}\right)-\Phi\left(\frac{x^{\prime}-x}{\sqrt{2 t}}+\kappa \sqrt{2 t}\right)\right) . \tag{26}
\end{equation*}
$$

The distribution of the death time is given by

$$
P(\tau \leq t)=1-e^{-b^{2} t}+\frac{2 \kappa e^{\left(\kappa^{2}-b^{2}\right) t}}{\cosh \kappa x^{\prime}} \int\left(\Phi\left(\frac{x^{\prime}-x}{\sqrt{2 t}}+\kappa \sqrt{2 t}\right)-\Phi\left(\frac{x^{\prime}-x}{\sqrt{2 t}}-\kappa \sqrt{2 t}\right)\right) \frac{d x}{\cosh \kappa x}
$$

The probability that B_{t} is eventually killed is

$$
P(\tau<\infty)=\lim _{t \rightarrow \infty} P(\tau \leq t)=1
$$

Proof. The result follows from (24). We note that the requirement $V(x) \geq 0$ yields the constraint on the parameters $b^{2} \geq 2 \kappa^{2}$ and several terms in (24) hence drop out yielding a causal Green's function $f\left(t, x \mid x^{\prime}\right)$.

Acknowledgments. This work was supported in part by the DGESYC (Contract No. BFM200202609) and the Junta de Castilla-Leon (Contract No. SA078/03).

REFERENCES

1. W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer Series in Synergetics, Vol. 15), Springer, Berlin (1984); R. N. Bhattacharya and E. C. Waymire, Stochastic Processes with Applications, Wiley, New York (1990); G. Roepstorff, Path Integral Approach to Quantum Physics, Springer, Berlin (1996); V. V. Konotop and L. Vazquez, Nonlinear Random Waves, World Scientific, Singapore (1994); E. B. Dynkin, Markov Processes, Vols. 1 and 2, Acad. Press, New York (1965); J. Villarroel, Stoch. Anal. Appl., 21, 1391 (2003).
2. J. Villarroel and M. J. Ablowitz, Stud. Appl. Math., 109, 151 (2002); J. Villarroel and M. J. Ablowitz, Nonlinearity, 17, 1843 (2004).
3. M. Boiti, F. Pempinelli, and A. Pogrebkov, Inverse Problems, 13, L7 (1997); M. Boiti, F. Pempinelli, A. Pogrebkov, and B. Prinari, Inverse Problems, 17, 937 (2001); M. Boiti, F. Pempinelli, A. Pogrebkov, and B. Prinari, Phys. Lett. A, 285, 307 (2001); M. Boiti, F. Pempinelli, A. Pogrebkov, and B. Prinari, J. Math. Phys., 43, 1044 (2002); B. Prinari, "Inverse scattering transform for the Kadomtsev-Petviashvili equations," PhD thesis, Univ. of Lecce, Lecce (1999); A. Fokas and A. Pogrebkov, Nonlinearity, 18, 771 (2003); M. J. Ablowitz and J. Villarroel, "Initial value problems and solutions of the Kadomtsev-Petviashvili equation," in: New Trends in Integrability and Partial Solvability (NATO Sci. Ser. II: Math. Phys. Chem., Vol. 132, A. B. Shabat, A. Gonzalez-Lopez, M. Manas, L. Martinez Alonso, and M. A. Rodriguez, eds.), Kluwer, Dordrecht (2004), p. 1.
4. V. A. Marchenko, Sturm-Liouville Operators and Applications [in Russian], Naukova Dumka, Kiev (1977); English transl., Birkhäuser, Basel (1986); M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering, Cambridge Univ. Press, Cambridge (1991); P. Deift and E. Trubowitz, Comm. Pure Appl. Math., 32, 121 (1979); L. D. Faddeev, J. Math. Phys., 4, 72 (1963).
5. L. D. Faddeev, Am. Math. Soc. Transl. Ser. II, 65, 139 (1967).
