KILLED RANDOM PROCESSES AND HEAT KERNELS

J. Villarroel^{*}

Let $V(x) \ge 0$ be a given function tending to a constant at infinity. It is well known that the density of the Brownian motion B_t killed at the infinitesimal rate V is a Green's function for the heat operator with such a potential. With an appropriate generalization, its Laplace transform also gives the density of $\int_0^t V(B_s) ds$. We construct such a Green's function via spectral analysis of the classical one-dimensional stationary Schrödinger operator.

Keywords: Brownian motion, heat equation propagator

1. Brownian motion and killing

In this introductory section, we recall several well-known aspects of the classical theory of the Brownian motion (BM) B_t (see [1] for more details). We are interested in certain aspects of the theory where the Green's function $G(t, x | t', x') \equiv G(t - t', x | x')$ for the heat operator with a negative "time-independent" potential, i.e.,

$$LG \equiv \left(-\partial_t + \partial_{xx} - V(x)\right)G(t, x \mid t', x') = -\delta(t - t')\delta(x - x'),\tag{1}$$

plays a crucial role. The construction of this propagator and its relation to the spectral analysis of the classical one-dimensional stationary Schrödinger operator is considered in Sec. 2. Assuming that V(x) tends to a constant as $|x| \to \infty$, we show how to implement this construction. In Sec. 3, we give a concrete construction of G(t, x | t', x') when V(x) corresponds to the simplest reflectionless potential of the Schrödinger operator.

We recall that BM is a stochastic process B_t that models a random walk, i.e., it describes the erratic motion of a particle that can move to the right or left with equal probability at each instant. Here, $B_t \equiv B_t(\omega)$ represents the position at time t of the Brownian traveler. If motion starts at x': $B_0 = x'$ and is assumed to be isotropic and homogeneous in space and time, then B_t has the density given by the classical heat kernel

$$P(B_t \in [x, x + dx)) = \frac{1}{\sqrt{4\pi t}} \exp\left[-\frac{(x - x')^2}{4t}\right] dx.$$

Equation (1) arises as follows. In addition, we suppose that a random killing mechanism is introduced such that B_t "disappears" at a random time τ or, more precisely, attains a (new) death state ∂ . We call the resulting process $\hat{B}_t = \partial \theta(t - \tau) + B_t \theta(\tau - t)$ the BM with killing $\hat{B}_t \in \mathbb{R} \cup \{\partial\}$ (or KBM). Let $\varphi(t) \equiv P(\hat{B}_t \neq \partial)$ be the probability that \hat{B}_t survives up to time t. We suppose that given that $\hat{B}_t = x \in \mathbb{R}$ $(\hat{B}_t \text{ took a value } x \text{ and hence has not yet been killed})$, the probability of being killed at any time t + h > tis o(h); concretely,

$$P(\widehat{B}_{t+h} \neq \partial \mid \widehat{B}_t = x) = 1 - V(x)h + o(h).$$

$$\tag{2}$$

^{*}Facultad de Ciencias, Universidad de Salamanca, Pza Merced sn, 37008 Salamanca, Spain, e-mail: javier@usal.es.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 144, No. 2, pp. 423–432, August, 2005.

Of course, $P(\widehat{B}_{t+h} \neq \partial | B_t = \partial) = 0$. Therefore, $V(x) \ge 0$ is the infinitesimal rate of killing of the Brownian particle. The former rules define the killing mechanism and by the total probability theorem imply that

$$P(\widehat{B}_t \neq \partial) = \exp\left\{-\int_0^t V(B_s) \, ds\right\}.$$
(3)

Indeed, we have

$$P(\widehat{B}_{t+h} \neq \partial) = P(\widehat{B}_{t+h} \neq \partial \mid \widehat{B}_t \neq \partial) P(\widehat{B}_t \neq \partial) + P(\widehat{B}_{t+h} \neq \partial \mid \widehat{B}_t = \partial) P(\widehat{B}_t = \partial)$$

Hence,

$$\varphi(t+h) = \varphi(t) (1 - V(B_t)h) + o(h)$$

and letting $h \to 0$, we obtain the differential equation with the initial condition

$$\frac{d\varphi}{dt} = -\varphi(t)V(B_t), \qquad \varphi(0) = 1,$$

and path integral (3) is recovered.

Given that $B_0 = x'$, KBM \hat{B}_t is then determined by giving the density

$$P(\widehat{B}_t \in [x, x + dx)) = P(B_t \in [x, x + dx), \tau > t) \equiv f(t, x \mid x') dx$$

$$\tag{4}$$

and the distribution of the death time

$$P(\tau \le t) = 1 - P(\widehat{B}_t \ne \partial) = 1 - \int_{\mathbb{R}} f(t, x \mid x') \, dx.$$
(5)

This density is recovered by the classical Feynman–Kac formula of probability and quantum mechanics establishing that the kernel f(t, x | x') of path integral (3) is a solution of (1): $Lf(x, t | x') = \delta(t)\delta(x - x')$. In particular, if $V(x) = b^2$, then we have

$$f(x,t \mid x') = \frac{e^{-b^2 t - (x-x')^2/(4t)}}{\sqrt{4\pi t}} \theta(t), \qquad P(\tau \le t) = 1 - e^{-b^2 t}$$

 $P(B_t \text{ is killed in finite time}) = \lim_{t \to \infty} P(\tau \le t) = 1,$

and the Brownian traveler is killed in a finite time with certainty.

These ideas find an interesting application in the problem of determining the density $\pi(t, z \mid x')dz \equiv P(Z_t \in dz)$ of the integrated process $Z_t \equiv \int_0^t V(B_s) ds$ given the initial values $B_0 = x'$ and $Z_0 = 0$. For this, given V(x), we consider the family $\tilde{V}(x; p) \equiv pV(x)$ of killing functions indexed by the positive parameter $p \geq 0$. Let \hat{B}_t^{p} be the corresponding KBM and $f(t, x; p \mid x')$ be its density: $P(\hat{B}_t^{p}) \in [x, x + dx) \equiv f(t, x; p \mid x') dx$. The total probability theorem gives

$$P(\widehat{B}_t^{p)} \neq \partial) = \exp\left\{-p\int_0^t V(B_s)\,ds\right\} = \int_0^\infty e^{-pz}\pi(t,z\,|\,x')\,dz.$$
(6)

It follows from (5) and (6) that

$$\zeta(t; p \mid x') = \int f(t, x; p \mid x') \, dx = \int_0^\infty e^{-pz} \pi(t, z \mid x') \, dz.$$

Inverting the Laplace transform, we have

$$\pi(t, z \,|\, x') = \frac{1}{2\pi i} \int_{\Gamma} \zeta(t; p \,|\, x') e^{pz} \, dp, \tag{7}$$

where Γ is the classical Bromwich contour running along a line parallel to the imaginary axis that leaves all singularities of $\zeta(t; p | x')$ in the complex p plane to the left.

But complete information about the correlated pair (B_t, Z_t) requires its joint density $\Pi(t, x, z | x')$ defined by $\Pi(t, x, z | x') dx dz \equiv P(B_t \in [x, x + dx), Z_t \in [z, z + dz))$. Similarly as above, we can prove that

$$\Pi(t, x, z \mid x') = \frac{1}{2\pi i} \int_{\Gamma} f(t, x; p \mid x') e^{pz} \, dp.$$
(8)

Again appealing to the Feynman–Kac formula, we find that f(t, x; p | x') solves (1) with the potential $\widetilde{V}(x; p) \equiv pV(x)$:

$$\left(-\partial_t + \partial_{xx} - pV(x)\right)f(t,x;p \mid x') = -\delta(t-t')\delta(x-x').$$

The problem of determining the statistical distribution of $\int_0^t V(B_s) ds$ thus reduces to obtaining the density of the KBM with the potential pV(x). As we now see, this is generally a difficult problem intervoven with classical spectral analysis for the one-dimensional stationary Schrödinger operator.

2. Determining the density of a killed BM and heat propagators

We now show how to determine the density of the KBM for a certain class of potentials. We assume that the function V(x) satisfies $V(x) \ge 0$ and that $V(x) \equiv b^2 - u(x)$ where b is a certain constant and u(x)satisfies

$$\lim_{|x| \to \infty} u(x) = 0, \qquad \int (1+|x|) |u(x)| \, dx < \infty.$$
(9)

We find that the Green's function is constructed in terms of eigenfunctions of the one-dimensional Schrödinger operator $A(x, \partial_x) \equiv \partial_{xx} + k^2 + u(x)$, where $k \equiv k_R + ik_I \in \mathbb{C}$ is a complex parameter (the identification $b = k_I$ is used later). We follow [2], where these ideas are developed in the context of the classical Kadomtsev–Petviashvili equation

$$(u_t + u_{xxx} + 6uu_x)_x + 3u_{yy} = 0$$

(we note that some preliminary work in this regard also appeared in [3]). We first recall several basic facts about the spectral theory of the former operator (see [4], [5]) for more details).

Let $\phi_{\pm}(x,k)$ and $\psi_{\pm}(x,k)$ be eigenfunctions of the stationary Schrödinger operator,

$$A(x,\partial_x)\phi_{\pm}(x,k) = A(x,\partial_x)\psi_{\pm}(x,k) = 0,$$
(10)

satisfying the conditions

$$\phi_{\pm}(x,k) = e^{\pm ikx}, \quad x \to -\infty, \qquad \psi_{\pm}(x,k) = e^{\pm ikx}, \quad x \to \infty.$$
(11)

If u(x) satisfies condition (9), then the former functions exist and are analytic functions of $k \equiv k_R + ik_I$ on \mathbb{C}_{\pm} (the upper and lower k half-planes) with limits at the boundary $\{k_I = 0\}$ and related by

$$\phi_{+}(x,k) = a(k)\psi_{-}(x,k) + b(k)\psi_{+}(x,k), \quad k \in \mathbb{R},$$
(12)

for certain functions a(k) and b(k) (see [5]), where a(k) is an analytic function of k on \mathbb{C}_+ having a finite set $\{k_j \equiv i\kappa_j, \kappa_j \in \mathbb{R}^+\}_{j=1,...,N}$ of (simple) zeroes. It turns out that $\phi_+(x,k)$ and $\psi_+(x,k)$ are proportional at these points: $\phi_+(x,k_j) = \beta_j \psi_+(x,k_j)$, where β_j is some complex constant. This along with (11) implies that $\phi_+(x,k_j)$ and $\psi_+(x,k_j)$ decay exponentially. The reflection coefficient $\rho(k) \equiv b/a(k)$, the "norming" constants β_j , and the zeroes $\{k_j \equiv i\kappa_j, \kappa_j \in \mathbb{R}^+ : a(k_j) = 0\}_{j=1,...,N}$ are the continuous and discrete scattering data of the one-dimensional Schrödinger operator, and $\psi_j(x) \equiv \psi_+(x,k_j)$ are the eigenfunctions of the discrete spectrum.

Let the continuous and discrete parts of the Green's function be

$$G_{\rm c}(t,x \,|\, x') = \frac{\theta(t)}{2\pi} \lim_{L \to \infty} \int_{-L}^{L} e^{-t(l^2 + 2ik_I l)} g(x,x',l + ik_I) \, dl, \tag{13}$$

$$G_{\rm d}(t, x \,|\, x') = i \sum_{\kappa_j \ge k_I} e^{(-k_I^2 + \kappa_j^2)t} g_j(x, x') \theta(-t), \tag{14}$$

where we define g(x, x', k) on \mathbb{C}_+ as

$$g(x, x', k) \equiv \frac{\phi_+(x, k)\psi_+(x', k)}{a_+(k)}, \quad k_I > 0.$$
(15)

Finally, the Green's function is taken to be

$$G(t, x \mid x') = G_{c}(t, x \mid x') + G_{d}(t, x \mid x').$$
(16)

The following result gives the main properties of these objects.

Proposition 1. The function g(x, x', k) exists and is a meromorphic function on the upper half-plane \mathbb{C}_+ with poles at the zeroes k_j of a(k) and the residues

$$\operatorname{Res} g(x, x', k)_{k=k_j} = g_j(x, x') \equiv C_j \psi_j(x) \psi_j(x'), \qquad C_j \equiv \frac{\beta_j}{a'(k_j)}.$$

As $|k| \to \infty$, g(x, x', k) has the asymptotic expansion

$$g(x, x', k) = e^{-ik(x-x')}\tilde{g}(x, x', k), \qquad \tilde{g}(x, x', k) \equiv 1 + \sum_{n=1}^{\infty} \frac{m_n(x, x')}{k^n}, \tag{17}$$

where the coefficients are uniformly bounded.

We are now prepared for the fundamental result.

Theorem 1. The function G(t, x | x') is a Green's function for the heat operator L with the potential $V(x) = k_I^2 - u(x)$:

$$LG \equiv \left(-\partial_t + \partial_{xx} - k_I^2 + u(x)\right)G = -\delta(t)\delta(x - x').$$
(18)

Proof. By direct derivation, we find that

$$LG_{c} = \frac{\theta(t)}{2\pi} \lim_{L \to \infty} \int_{-L}^{L} e^{-t(l^{2} + 2ik_{I}l)} \left[\partial_{xx} + (l + ik_{I})^{2} + u(x)\right] g(x, x', l + ik_{I}) dl - \frac{\delta(t)}{2\pi} \int_{\mathbb{R}} e^{-t(l^{2} + 2ik_{I}l)} g(x, x', l + ik_{I}) dl.$$

In view of (10), the first term vanishes identically. Therefore,

$$LG_{c} = -\frac{\delta(t)}{2\pi} \lim_{L \to \infty} \int_{-L}^{L} g(x, x', l + ik_{I}) \, dl = -\delta(t) \bigg(\delta(x - x') + i \sum_{\kappa_{j} \ge |k_{I}|} g_{j}(x, x') \bigg).$$

This last equality is a deep result, which we do not prove here, regarding the completeness of the eigenfunctions of the Schrödinger operator. moreover, we trivially have

$$LG_{\mathrm{d}} = i\delta(t) \sum_{\kappa_j \ge |k_I|} g_j(x, x').$$

The analyticity properties of g(x, x', l) can be used to derive another interesting, more useful representation of the Green's function. We obtain the following result.

Result 1. The Green's function for the operator L in (18) can also be written as

$$G(t, x \mid x') = i \sum_{\kappa_j \ge k_I} e^{(\kappa_j^2 - k_I^2)t} g_j(x, x') \theta(-t) + \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-t(l^2 + k_I^2)} g(x, x', l) \, dl - i \sum_{k_I > \kappa_j} e^{(\kappa_j^2 - k_I^2)t} g_j(x, x') \right] \theta(t).$$
(19)

Proof. We consider Cauchy integral (13). The corresponding integral in the Green's function can be transformed such that the integration is over the real axis. For this, we consider a rectangular integration contour Γ_L taken in the clockwise sense with vertices at the points $v_1, v_2, v_3, v_4 \in \mathbb{C}_+$ on the complex upper half-plane where

$$v_1 = -L,$$
 $v_2 = L,$ $v_3 = L + ik_I,$ $v_4 = -L + ik_I,$

The contribution of the integrals over the vertical sides is proportional to

$$\frac{1}{2\pi}\int_0^{k_I}e^{-t((L+is)^2+k_I^2)}e^{-i(L+is)(x-x')}\,ds,$$

which tends to zero as $L \to \infty$. We recall that g(k) is meromorphic on \mathbb{C}_+ . Hence, Cauchy's theorem gives

$$\lim_{L \to \infty} \int_{-L}^{L} e^{-t(l^2 + k_I^2)} g(x, x', l) \, dl - \lim_{L \to \infty} \int_{-L}^{L} e^{-t(l^2 + 2ik_I l)} g(x, x', l + ik_I) \, dl =$$
$$= \lim_{L \to \infty} \int_{\Gamma_L} e^{-t(z^2 + k_I^2)} g(x, x', z) \, dz = 2\pi i \sum_{k_I > \kappa_j} e^{(\kappa_j^2 - k_I^2)t} g_j(x, x').$$

This amounts to the claim.

We note that the Green's function has the interesting property that it vanishes exponentially fast as either |t| or |x| tends to ∞ ; in particular, $G_c(t, x | x')$ has an asymptotic expansion with the leading term given by

$$G_{\rm c}(t,x \mid x') \approx e^{-(k_I^2 + l_0^2)t} \frac{g(x,x',-il_0)}{\sqrt{4\pi t}} \theta(t) + i \left(\sum_{\kappa_j \le |l_0|} -\sum_{\kappa_j < k_I}\right) g_j(x,x') e^{(\kappa_j^2 - k_I^2)t} \theta(t)$$
(20)

as $|t| \to \infty$ with $(x - x')/(2t) \equiv l_0$ fixed.

3. The Green's function for reflectionless potentials

We next consider the case of reflectionless potentials characterized by $\rho(k) = 0$. The simplest of such potentials is the one-bound-state Bargmann potential (or soliton potential) given by

$$u(x) = \frac{2\kappa^2}{\cosh^2 \kappa (x - x_0)},$$

where κ and x_0 are constants. It is well known that the spectral data for this potential consist of just one zero (eigenvalue) $k_1 = i\kappa$ and the norming constant $C_1 \equiv 2i\kappa e^{2\kappa x_0}$. The eigenfunction of the discrete spectrum is

$$\psi_1(x) = \psi_+(x, k_1) = \frac{e^{-\kappa x_0}}{\cosh \kappa (x - x_0)}.$$

The wave functions are

$$\psi_{+}(x,-k) = \psi_{-}(x,k) = \frac{\phi_{+}(x,k)}{a(k)} = e^{-ikx} \left(1 + \frac{C_{1}e^{-\kappa x}}{k - i\kappa} \psi_{1}(x) \right).$$

We hence have

$$g(x,x',k) = e^{ik(x'-x)} \left(1 + g_1(x,x') \left(\frac{e^{\kappa(x'-x)}}{k-i\kappa} - \frac{e^{-\kappa(x'-x)}}{k+i\kappa} \right) \right),\tag{21}$$

and the Green's function involves the evaluation of integral (19). We note that

$$\int_{-\infty}^{\infty} \frac{e^{-tl^2 + il(x'-x))}}{l - i\kappa} dl = 2\pi i e^{\kappa^2 t - \kappa(x'-x)} \Phi\left(\frac{x'-x}{\kappa\sqrt{2t}} - \kappa\sqrt{2t}\right),\tag{22}$$

where we define

$$\Phi(x) \equiv \int_{-\infty}^{x} e^{-z^2/2} \frac{dz}{\sqrt{2\pi}}.$$

We find that

$$G(t, x \mid x') = \frac{e^{-k_I^2 t - (x - x')^2 / (4t)}}{\sqrt{4\pi t}} \theta(t) + \frac{2\kappa e^{(\kappa^2 - k_I^2)t}}{\cosh \kappa (x - x_0) \cosh \kappa (x' - x_0)} \times \left[\left(\Phi\left(\frac{x' - x}{\sqrt{2t}} + \kappa\sqrt{2t}\right) - \Phi\left(\frac{x' - x}{\sqrt{t}} - \kappa\sqrt{2t}\right) \right) \theta(t) + \mathbf{1}_{\{k_I \le \kappa\}} \right],$$
(23)

where we introduce

$$1_{\{k_I \le \kappa\}} = \begin{cases} 1, & k_I \le \kappa, \\ 0, & k_I > \kappa. \end{cases}$$

It turns out that this construction generalizes to the case of reflectionless potentials. We suppose that u(x) is an N-soliton potential, i.e., that $\rho(k) = 0$ and a(k) has N zeroes with norming constants C_j , j = 1, ..., N. Then

$$G(t, x \mid x') = \frac{e^{-k_I^2 t - (x - x')^2 / (4t)}}{\sqrt{4\pi t}} \theta(t) + i \sum_j g_j(x, x') e^{(\kappa_j^2 - k_I^2)t} \times \left[\left(\Phi\left(\frac{x' - x}{\sqrt{2t}} - \kappa_j \sqrt{2t}\right) - \Phi\left(\frac{x' - x}{\sqrt{2t}} + \kappa_j \sqrt{2t}\right) \right) \theta(t) + 1_{\{k_I \le \kappa_j\}} \right].$$
(24)

If $x^2 + x'^2 + t^2 \to \infty$ with $(x' - x)/t \to l_0$, then

$$\frac{x'-x}{\sqrt{2t}} - \kappa\sqrt{2t} \to \pm \infty \quad \text{if } \pm (l_0 - \kappa) > 0,$$

and hence

$$\Phi\left(\frac{x'-x}{\sqrt{2t}}-\kappa\sqrt{2t}\right)-\Phi\left(\frac{x'-x}{\sqrt{2t}}+\kappa\sqrt{2t}\right)\underset{x^2+x'^2+t^2\to\infty}{\longrightarrow}-1_{\{-\kappa< l_0<\kappa\}},$$

where

$$-1_{\{-\kappa < l_0 < \kappa\}} \equiv -\theta(\kappa - l_0)\theta(l_0 + \kappa) = 1_{\{\kappa \le |l_0|\}} - 1 = 1_{\{\kappa \le |l_0|\}} - 1_{\{\kappa < k_I\}} - 1_{\{\kappa \ge k_I\}},$$

in exact agreement with formula (20).

The density f(t, x | x') of the KBM with the killing rate $V(x) = b^2 - u(x) \ge 0$ is recovered from the above ideas. We recall that f(t, x | x') is interpreted as the density of the position of B_t with the killing time greater than t. Further, it solves (18) with the identification $b = k_I$. We determine it in the case of the one-soliton potential

$$V(x) = b^2 - u(x), \qquad u(x) = \frac{2\kappa^2}{\cosh^2 \kappa x},$$
(25)

where b and κ are constants and $b^2 \ge 2\kappa^2$ (by translational invariance, a further constant could be added). We have the following result.

Result 2. Let a Brownian motion start at x', with the killing rate given by (25). Then the probability that it has not yet been killed at the time t > 0 and is located in the interval [x, x + dx) is $P(B_t \in [x, x + dx), \tau > t) = f(t, x | x') dx$, where

$$f(t,x \mid x') = \frac{e^{-b^2 t - (x-x')^2/(4t)}}{\sqrt{4\pi t}} + \frac{2\kappa e^{(\kappa^2 - b^2)t}}{\cosh \kappa x \cosh \kappa x'} \left(\Phi\left(\frac{x'-x}{\sqrt{2t}} - \kappa\sqrt{2t}\right) - \Phi\left(\frac{x'-x}{\sqrt{2t}} + \kappa\sqrt{2t}\right)\right).$$
(26)

The distribution of the death time is given by

$$P(\tau \le t) = 1 - e^{-b^2 t} + \frac{2\kappa e^{(\kappa^2 - b^2)t}}{\cosh \kappa x'} \int \left(\Phi\left(\frac{x' - x}{\sqrt{2t}} + \kappa\sqrt{2t}\right) - \Phi\left(\frac{x' - x}{\sqrt{2t}} - \kappa\sqrt{2t}\right) \right) \frac{dx}{\cosh \kappa x'}.$$

The probability that B_t is eventually killed is

$$P(\tau < \infty) = \lim_{t \to \infty} P(\tau \le t) = 1.$$

Proof. The result follows from (24). We note that the requirement $V(x) \ge 0$ yields the constraint on the parameters $b^2 \ge 2\kappa^2$ and several terms in (24) hence drop out yielding a causal Green's function f(t, x | x').

Acknowledgments. This work was supported in part by the DGESYC (Contract No. BFM2002-02609) and the Junta de Castilla-Leon (Contract No. SA078/03).

REFERENCES

- W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer Series in Synergetics, Vol. 15), Springer, Berlin (1984); R. N. Bhattacharya and E. C. Waymire, Stochastic Processes with Applications, Wiley, New York (1990); G. Roepstorff, Path Integral Approach to Quantum Physics, Springer, Berlin (1996); V. V. Konotop and L. Vazquez, Nonlinear Random Waves, World Scientific, Singapore (1994); E. B. Dynkin, Markov Processes, Vols. 1 and 2, Acad. Press, New York (1965); J. Villarroel, Stoch. Anal. Appl., 21, 1391 (2003).
- J. Villarroel and M. J. Ablowitz, Stud. Appl. Math., 109, 151 (2002); J. Villarroel and M. J. Ablowitz, Nonlinearity, 17, 1843 (2004).
- M. Boiti, F. Pempinelli, and A. Pogrebkov, Inverse Problems, 13, L7 (1997); M. Boiti, F. Pempinelli, A. Pogrebkov, and B. Prinari, Inverse Problems, 17, 937 (2001); M. Boiti, F. Pempinelli, A. Pogrebkov, and B. Prinari, Phys. Lett. A, 285, 307 (2001); M. Boiti, F. Pempinelli, A. Pogrebkov, and B. Prinari, J. Math. Phys., 43, 1044 (2002); B. Prinari, "Inverse scattering transform for the Kadomtsev–Petviashvili equations," PhD thesis, Univ. of Lecce, Lecce (1999); A. Fokas and A. Pogrebkov, Nonlinearity, 18, 771 (2003); M. J. Ablowitz and J. Villarroel, "Initial value problems and solutions of the Kadomtsev–Petviashvili equation," in: New Trends in Integrability and Partial Solvability (NATO Sci. Ser. II: Math. Phys. Chem., Vol. 132, A. B. Shabat, A. Gonzalez-Lopez, M. Manas, L. Martinez Alonso, and M. A. Rodriguez, eds.), Kluwer, Dordrecht (2004), p. 1.
- 4. V. A. Marchenko, Sturm-Liouville Operators and Applications [in Russian], Naukova Dumka, Kiev (1977); English transl., Birkhäuser, Basel (1986); M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering, Cambridge Univ. Press, Cambridge (1991); P. Deift and E. Trubowitz, Comm. Pure Appl. Math., **32**, 121 (1979); L. D. Faddeev, J. Math. Phys., **4**, 72 (1963).
- 5. L. D. Faddeev, Am. Math. Soc. Transl. Ser. II, 65, 139 (1967).