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SOLUTIONS OF A CAMASSA–HOLM HIERARCHY IN 2+1

DIMENSIONS

P. G. Estévez∗ and J. Prada†

We consider solutions of a generalization of the Camassa–Holm hierarchy to 2+1 dimensions that include,

in particular, the well-known multipeakon solutions for the celebrated Camassa–Holm equation.
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1. Introduction

In 1993, Camassa and Holm found a completely integrable dispersive shallow-water equation, namely,

ut + 2kux − uxxt + 3uux − 2uxuxx + uuxxx = 0, (1.1)

where u is the fluid velocity in the x direction and k is a constant related to the critical shallow-water wave
speed [1]. The limit k = 0 was given special attention in [2] because of its mathematical interest; in the
search for solutions of the form u(x, t) = U(x − ct) (U is a function that vanishes at infinity with its first
and second derivatives), it was found that

U = ce−|x−ct| + O(k log k). (1.2)

The form of traveling-wave solution (1.2) led Camassa and Holm to make the well-known solution ansatz
for solutions with N interacting peaks of the Camassa–Holm (CH) equation.

Thereafter, much attention was given to peakon solutions. For instance, in 1994, Alber, Camassa,
Holm, and Marsden investigated the geometry of peaked solitons for the general CH equation, i.e., Eq. (1.1),
without assuming k = 0 [3]. The existence of a Liouville transformation mapping the CH spectral problem
to the string problem was used by Beals, Sattinger, and Szmigielski in 1999 to present a closed form of the
multipeakon solutions using a theorem of Stieltjes on continuous fractions [4]. The same authors investigated
the relation between the multipeakons and the classical moment problem [5]. In 2000, Constantin and
Strauss studied the stability of peakons [6], and Lenells studied the stability of periodic peakons [7] and
presented a variational proof of it [8].

Later, in 2003, Degasperis, Holm, and Hone investigated an integrable equation with peakon solu-
tions [9]. This equation, as the authors said, is similar to the CH shallow-water equation in form and was
obtained by the method of asymptotic integrability. In its dispersionless form, it was written as

ut − uxxt + 4uux = 3uxuxx + uuxxx, (1.3)

and it was proved that the single peakon

u(x, t) = ce−|x−ct| (1.4)
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is a solution. The authors also considered the family of equations

ut − uxxt + (b + 1)uux = buxuxx + uuxxx (1.5)

for the real parameter b [10], including both the CH equation (b = 2) and (1.3) (b = 3) as special cases. It
turned out that all equations in the family have multipeakon solutions and satisfy a dynamical system that
takes the Hamiltonian form only in the case b = 2. Hone and Wang isolated the peakon equations via the
Wahlquist–Estabrook prolongation algebra method [11]. In [12], it was shown that the CH spectral problem
gives two different integrable hierarchies of nonlinear evolution equations: one is of a negative-order CH
hierarchy and the other is of a positive-order CH hierarchy. Moreover, it was seen that the celebrated CH
equation is included in the negative-order CH hierarchy while the Dym-type equation is included in the
positive-order CH hierarchy. Many papers deal with solutions of the CH hierarchy, for instance, [13].

In Sec. 2, we consider a generalization of the CH hierarchy to 2+1 dimensions [14], [15]. Following the
lead of Camassa and Holm, we make an ansatz for the existence of certain multipeakon solutions in the
different equations of the hierarchy and present the resulting dynamical system. This is naturally a PDE
system, and the equations appearing are hence of different types: a set of equations involving derivatives
with respect to the variable y, another set giving the recursive relations, and finally the evolution equations.
In Sec. 3, we present examples of the dynamical systems in some particular cases. Finally, we list conclusions
in Sec. 4.

2. The negative Camassa–Holm hierarchy in 2+1 dimensions

Consider the well-known negative Camassa–Holm hierarchy (NCHH) [12] for a field u(x, t), i.e.,

ut = R−nux, R = J0J
−1
1 , (2.1)

where the hierarchy order n is an integer and J0 and J1 are the operators

J0 = ∂3 − ∂, J1 = u∂ + ∂u, ∂ =
∂

∂x
. (2.2)

Introducing n functions v1(x, t), . . . , vn(x, t) as in [15],

v1 = J−1
0 ux ⇒ J0v1 = ux,

vk = J−1
0 J1vk−1 ⇒ J0vk = J1vk−1, k = 2, . . . , n,

(2.3)

we can write Eq. (2.1) as

ut = J1vn, (2.4)

and can therefore consider the NCHH the n+1 Eqs. (2.3) and (2.4) in n+1 fields u, v1, . . . , vn.
Obviously, system (2.3), (2.4) reduces to the well-known CH equation for n = 1 [1].

2.1. Generalization to three dimensions. As was shown in [15], a simple generalization of sys-
tem (2.3), (2.4) to three dimensions is the system

Uy = J0V1,

J0Vk = J1Vk−1, k = 2, . . . , n,

Ut = J1Vn,

(2.5)
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where U = U(x, t, y) and Vj = Vj(x, t, y), which can be written as

Ut = R−nUy (2.6)

and denoted by CHH(2+1). It is trivial to see that NCHH (2.1) is obtained from (2.6) by the reduction
∂/∂y = ∂/∂x.

2.2. Solutions of NCHH(2+1). We now make the ansatz for NCCH(2+1),

Vk(x, y, t) =
N∑

i=1

A
k)
i (y, t)∂−1(e−|x−qi(y,t)|) +

N∑

i=1

B
k)
i (y, t)e−|x−qi(y,t)|, k = 1, 2, . . . , n, (2.7)

where A
1)
i (y, t) = 0, ∀i = 1, 2, . . . , N , i.e.,

V1(x, y, t) =
N∑

i=1

B
1)
i (y, t)e−|x−qi(y,t)| (2.8)

is a multipeakon solution, and according to (2.5), U is

U(x, y, t) = −2
N∑

i=1

γi(y, t)δ(x − qi(y, t)). (2.9)

Therefore, as in the CH equation, the peaks in V1 are delta functions in U .
Substituting (2.7) and (2.9) in (2.5) yields the explicit formulation of the resulting system. We separate

the three different sets of equations that appear in it: first, 2N equations involving derivatives with respect
to the variable y; second, the recursive relations; third, the evolution equations. We have the following:

first,

∂γi(y, t)
∂y

= 0,

γi(y, t)
∂qi(y, t)

∂y
= −B

1)
i (y, t), i = 1, 2, . . . , N ;

(2.10)

second,

A
k)
i (y, t) =

N∑

j=1

γi(y, t)Ak−1)
j (y, t)e−|qi(y,t)−qj(y,t)| −

−
N∑

j=1

γi(y, t)Bk−1)
j (y, t)e−|qi(y,t)−qj(y,t)| sgn(qi(y, t) − qj(y, t)),

B
k)
i (y, t) = −

N∑

j=1

γi(y, t)Ak−1)
j (y, t)(e−|qi(y,t)−qj(y,t)| − 1) sgn(qi(y, t) − qj(y, t)) +

+
N∑

j=1

γi(y, t)Bk−1)
j (y, t)e−|qi(y,t)−qj(y,t)|, k = 2, . . . , n, i = 1, 2, . . . , N ;

(2.11)
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third,

∂γi(y, t)
∂t

= γi(y, t)
N∑

j=1

A
n)
j (y, t)e−|qi(y,t)−qj(y,t)| −

− γi(y, t)
N∑

j=1

B
n)
j (y, t)e−|qi(y,t)−qj(y,t)| sgn(qi(y, t) − qj(y, t)),

∂qi(y, t)
∂t

=
N∑

j=1

A
n)
j (y, t)(e−|qi(y,t)−qj(y,t)| − 1) sgn(qi(y, t) − qj(y, t)) −

−
N∑

j=1

B
n)
j (y, t)e−|qi(y,t)−qj(y,t)|, i = 1, 2, . . . , N.

(2.12)

3. Examples in 2+1 dimensions

3.1. The case n = 1 and N = 1. We now consider the system

Uy = (V1)xxx − (V1)x,

Ut = 2U(V1)x + UxV1,
(3.1)

which corresponds to the choice n = 1 in hierarchy (2.5). For N = 1, i.e., for

V1(x, y, t) = p(y, t)e−|x−q(y,t)|,

U(x, y, t) = −2γ(y, t)δ(x − q(y, t)),
(3.2)

we obtain
γ(y, t) = γ0,

∂q(y, t)
∂t

= γ0

(
∂q(y, t)

∂y

)
,

(3.3)

i.e., q(y, t) = F (y + γ0t), and therefore

V1(x, y, t) = −∂q(y, t)
∂t

e−|x−q(y,t)|,

U(x, y, t) = −2γ0δ(x − q(y, t)).
(3.4)

We note that if q(y, t) has the form q(y, t) = y + γ0t, then a peakon solution of this system is given by

V1(x, y, t) = γ0e
−|x−y−γ0t|,

U(x, y, t) = −2γ0δ(x − y − γ0t).
(3.5)

3.2. The case n = 1 and N = 2: Two-soliton dynamics. We consider system (3.1) and take

V1(x, y, t) = p1(y, t)e−|x−q1(y,t)| + p2(y, t)e−|x−q2(y,t)|,

U(x, y, t) = −2γ1(y, t)δ(x − q1(y, t)) − 2γ2(y, t)δ(x − q2(y, t)).
(3.6)
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Substituting these functions in (3.1) gives the dynamical system for the two-soliton case, from which we
find that γ1 and γ2 are independent of y. Setting

F (t) = p2(y, t)e|q1(y,t)−q2(y,t)| sgn(q1(y, t) − q2(y, t)), (3.7)

G(t) = p1(y, t)e|q2(y,t)−q1(y,t)| sgn(q2(y, t) − q1(y, t)), (3.8)

we obtain

log γ1(t) = −
∫

F (t) dt, log γ2(t) = −
∫

G(t) dt, (3.9)

and therefore

U(y, t) = −2e−
∫

F (t) dtδ(x − q1(y, t)) − 2e−
∫

G(t) dtδ(x − q2(y, t)), (3.10)

where
∂q1(y, t)

∂y
= −e

∫
F (t) dtp1(y, t),

∂q2(y, t)
∂y

= −e
∫

G(t) dtp2(y, t),

∂q1(y, t)
∂t

= −p1(y, t) − p2(y, t)e−|q1(y,t)−q2(y,t)|,

∂q2(y, t)
∂t

= −p1(y, t)e−|q2(y,t)−q1(y,t)| − p2(y, t).

(3.11)

3.3. The case n = 2 and N = 1. For the system

Uy = (V1)xxx − (V1)x,

(V2)xxx − (V2)x = 2U(V1)x + UxV1,

Ut = 2U(V2)x + UxV2,

(3.12)

taking V1 and U as in (3.2) and

V2(x, y, t) = A
2)
1 (y, t)∂−1(e−|x−q(y,t)|) + B

2)
1 (y, t)e−|x−q(y,t)|, (3.13)

we obtain
∂γ(y, t)

∂y
= 0,

∂q(y, t)
∂y

= − p(y, t)
γ(y, t)

,

A
2)
1 (y, t) = 0, B

2)
1 (y, t) = γ(y, t)p(y, t),

∂γ(y, t)
∂t

= 0,
∂q(y, t)

∂t
= −γ(y, t)p(y, t),

(3.14)

and therefore
γ(y, t) = const = γ0,

V1(x, y, t) = −γ0
∂q(y, t)

∂y
e−|x−q(y,t)|,

V2(x, y, t) = −∂q(y, t)
∂t

e−|x−q(y,t)|,

U(x, y, t) = −2γ0δ(x − q(y, t)),

∂

∂t
(q(y, t)) = γ2

0

∂q(y, t)
∂y

,

(3.15)
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where q(y, t) = F (y + γ2
0t). We note that if q(y, t) = y + γ2

0t in this case, then a solution of this system is

V1(x, y, t) = −γ0ae−|x−y−γ2
0t|,

V2(x, y, t) = −γ2
0e−|x−y−γ2

0t|,

U(x, y, t) = −2γ0δ(x − y − γ2
0t),

(3.16)

and both the variables V1 and V2 therefore have peakon solutions.

4. Conclusions

We have considered a generalization of the CH hierarchy to 2+1 dimensions and have studied certain
solutions. Our main results are as follows:

1. We found the dynamical system and separated the different sets of equations involved in it:
equations with derivatives with respect to the spatial variable y, the recursive relations, and the
evolution equations.

2. We analyzed the resulting dynamical system in some particular cases and proved that peakon
solutions exist.
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