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Abstract. In this paper we obtain general conditions under which stochastic differential equations possess a strong solution
representable in an explicit form as a functional of the Wiener process. Particular interest bears the problem of determining
conditions that guarantee non- explosion of the solution. The necessary as well as sufficient condition is derived.
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1. Introduction

Let (Ω, G, P ) be a given complete probability space,{Wt, t � 0} a given Brownian motion defined on
it with the standard filtrationFt ≡ σ(Ws, s � t), andx0 ∈ R some “initial condition”. Here we consider
the problem of determining autonomous (i.e., time independent) stochastic differential equations (sde)

Xt = x0 +
∫ t

t0

a(Xs)ds+
∫ t

t0

b(Xs)dWs (1)

that have an strong solutionX : R+×Ω → E ⊂ R relative to(Wt, Ft) that can be expressed in the form

Xt(ω) = g

(
t,

∫ t

t0

f(t′)dWt′

)
a.s.P (2)

for someg : R+ × R → R andf : R → R. We note that in [2] some results in this connection
were obtained and the solution to Eq. (1) was reduced to solving a (deterministic) differential equation.
In [4–6] Engelbert and Schmidt have considered related questions in the context of weak solutions-as
opposed to strong. These formulations, however, generically do not yield explicit representations for the
solutions and the semigroup generated or for other relevant properties. In [12] explicit expressions for
the solution were detailed and a necessary condition that guarantees global solutions was given.

In this note we extend the above analysis corresponding to autonomous sde and we determine necessary
and sufficient conditions under which Eq. (1) has a strong solutionX t of the form Eq. (2), and the main
stochastic features. A major issue in our study is determining necessary and sufficient conditions that
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guarantee that the solution is not exploding, and the law of the explosion timetexp whenever relevant;
here we definetexp(ω) = sup{t � 0 : Xt ∈ R}. and we say that explosion occurs ifP (texp < ∞) > 0.
Under rather general conditions, only two possibilities obtain: the probability thatXt explodes in finite
time is either zero or one. We determine the probability of explosion. We evaluate all the Feller’s
measures of the process, which allows us to classify the nature of boundaries ofX t. Recurrent properties
and the existence of a stationary measure are also considered. We also determine the semigroup
(Utf)(x) ≡ Exf(Xt) generated by{Xt}.

We carry out the analysis corresponding to the non autonomous or time dependent sde

Xt = x0 +
∫ t

t0

a(s,Xs)ds+
∫ t

t0

b(s,Xs)dWs (3)

Assuming some differentiability on the coefficientsa, b : R+ × R → R, we give both necessary as
well as sufficient conditions under which the strong solutionXt relative to(Wt, Ft) can be expressed
a.s.P as a function of the form Eq. (2), and corresponding to these cases we detail that representation
of the solution.

2. The time independent case; conditions for explosion

As has been already commented, in the sequel we aim to determine when does a strong solution with
the representation Eq. (2) exist, and in this case, the main stochastic features of the solution. Generically,
even if such a solution exists, it it might break down at a given random time, or the explosion time
texp(ω), where we definetexp(ω) = inf{t � 0 : Xt /∈ R}. If P (texp < ∞) > 0 we say that explosion
occurs. An overriding issue is to determine the law of that time, and in particular give conditions that
guarantee that the solution exists for all time. In this connection in [12] a condition that guarantees
globality is given. The opposite issue, namely, to set forth necessary and sufficient conditions for the
solution to explode in finite time and in this case, determine the distribution of the explosion time, has
not been addressed at all. Here we solve these problems.

Consider the Ito Eq. (1) withWt a Brownian motion andb(x0) 	= 0. For given constantsC andQ,
define the difussion{ζt, t � t0} by

ζt ≡
[
W̃t + C

∫ t

t0

f(t′)dt′
]/

f ; f(t) = eQt (4)

where we introduce∆ : R → R and the difussioñWt by

∆(x) ≡
∫ x

x0

dx′

b(x′)
; W̃t ≡

∫ t

t0

f(t′)dWt′ (5)

Define the endpointse−, e+ ∈ R̄ as follows:(e−, e+) is the biggest interval withe− < x0 < e+ such
that∆(x) is finite∀x ∈ (e−, e+). Call exploding an endpointe that satisfies|∆(e)| < ∞, nonexploding
in the opposite case. Letτ be the first exit time ofζt of the intervalU ≡ (∆(e−),∆(e+)). Then, the
following holds.
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2.1. Result 1

i] Assume thatb is of classC1 and thata, b satisfy

a(x) =
[
bx
2
+ C −Q∆(x)

]
b(x) (6)

∀x ∈ (e−, e+). Then,Xt defined by the implicit representation

ζt(ω) = ∆(Xt(ω)) a.s.P, ω ∈ Ω (7)

solves Eq. (1) fort < τ , andtexp = τ .
ii] The state space of the difussion{Xt, t � 0} is given byE = (e−, e+).
iii] Xt does not explode in finite time with probability1 iff

|∆(e−)| = ∆(e+) = ∞ (8)

Here we have introduced

∆(e−) ≡ −−→xe− lim ∆(x),∆(e+) ≡ −−−→
x ↑ e+ lim∆(x) (9)

iv] If b is of classC2 anda is of classC1 then a necessary condition for Eq. (1) to have an strong
solution of the form Eq. (2) withg of classC1,2 andf of classC1 is that there exists constantsC,Q such
thatf(t) = eQt and that Eq. (6) holds locally.

2.2. Remarks

1. If b is twice differentiable and Eq. (6) holds, thenax exists and is continuous on any closed interval
contained in(e−, e+) and they are both locally Lipschitzian there. Strong uniqueness of the solution
up to the explosion time follows.

2. Further insight in the solution can be gained by noting the following. A Wiener processŴt exists
on (Ω, G, P ) such thatW̃t = Ŵϕ(t) a.s.P , whereϕ(t) ≡ ∫ t

t0
f2(s)ds ≡< W̃t >. IndeedW̃t is a

local martingale, and the time change formula for Ito integrals- [9,13]-guarantees thatW̃rt is also
a Brownian motion where we definert ≡ inf{s � 0 : ϕ(s) > t}. (If ϕ(∞) < ∞ thenW̃rt has
the same law than Brownian motion up to timeϕ(∞)). Sinceϕ(t) is strictly increasing it has an
inverse and the result follows witĥWt = W̃rt .

3. Whenb : R → R+ is a never vanishing function of classC 1(R), then−e− = e+ = ∞, Eq. (8)
amounts to the condition

∫ 0
±∞

1
b = ∞ and we recover the results of [12].

4. Given the standard filtration ofσ−fieldsGt ≡ σ(Xs, 0 � s � t) ↑ G∞ ⊂ G, we use for anyG∞
measurableξ : Ω → R, Ex0(ξ) = E(ξ|X0 = x0). Note thatGt ⊂ Ft ≡ σ(Ws, 0 � s � t) and
Gt = Ft if Efq. (8) holds .

2.3. Result 2

Under the conditions of result Eq. (1) and withu± ≡ ∆(e±), the probability that the solution does not
explode in finite time is given by

i] if both endpoints are exploding

Px0

(
Xt does not explode in finite time

)
= 0 (10)
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ii] if only one of the endpoints, saye+, is exploding thenii.1If eitherQ > 0, orQ = C = 0

Px0

(
Xt does not explode in finite time

)
= 0, (11a)

ii.2] Q = 0.

Px0 (Xt does not explode in finite time) = 1− exp(2Cu+), C < 0C < 00, C � 0 (11b)

ii.3] Q < 0. With q ≡ C
Q one has that

Px0

(
Xt does not explode in finite time

)
=

∫ u+−q
−q eQz2

dz∫ u+−q
−∞ eQz2dz

, (11c)

iii] If neither point is exploding

Px0

(
Xt does not explode in finite time

)
= 1 (12)

In particular if eitherQ > 0, orQ = C = 0, the following zero-one law holds

Px0

(
Xt does not explode in finite time

)
= 1 ⇔ |u−| = u+ = ∞ 0, otherwise Eq. (13) (13)

Proof
By the above discussion the solution explodes at a timetexp(ω) that equals the first exit time ofζt

of the intervalU . Hence the proof is a matter of determining the corresponding probabilities for the
diffusionζt and will be skipped.

2.4. Recurrence properties of the process

The recurrence properties of the process Eq. (7) and a classification of its boundary points can be
explicitly determined, as it is shown next. We recall several well known concepts that, after Feller [7,8],
classify these matters. IfB is the Borelσ- field the scale and the speed measuresS,M : B → R are
defined by

S(a, x) =
∫ x

a

dz

p(z)
,M(a, x) =

∫ x

a

p(z)
b2(z)

dz; p(x) ≡ exp{2
∫ x a(z)

b2(z)
dz} (14a)

and the extension theorem. These measures are generated by distribution functionss(x),m(x). Finally
the Feller functionsΣ(a, x),Ω(a, x) are defined as

Σ(a, x) =
∫ x

a
S(a, y)dm(y); Ω(a, x) =

∫ x

a
M(a, y)ds(y) (14b)

The reader is referred to [1,3,10,11] or [15].
We next evaluate the above functions and classify the boundaries of the process in terms of the signed

measure∆(y;x) ≡ ∆(x)−∆(y).
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2.5. Result 3

Assume the conditions of result 1 hold. If|∆(e)| < ∞ the boundarye is regular:attracting attainable.
Otherwise one has according to the values of the constantsC,Q that

1) If C = Q = 0, e is natural.
2) Q = 0, C > 0. e is natural ife = e−, is attracting and not attainable ife = e+.
3) Q = 0, C < 0. e is natural ife = e+, is attracting and not attainable ife = e−.
4) Q > 0. e is natural.
5) Q < 0. e is attracting but nonattainable .

Proof
The proof uses the fact that all Feller functions can be evaluated in an explicit way using Eq. (7). For

example in the simplest case whenQ = C = 0 is

M(y, x) = S(y, x) = ∆(y, x) ≡ ∆(x)−∆(y) (15)

Σ(y, x) = Ω(y, x) =
1
2
∆2(y, x) (16)

It is then clear that the boundarye is natural iff∆(e) = ∞. If ∆(e) < ∞, using Feller’s criterion
we conclude that in this case there is positive probability for the boundary to be reached in finite time
:Px0{τe < ∞} > 0. Hence the boundary is attracting and attainable.

2.6. Ergodic properties

The situation corresponding to condition Eq. (8) bears particular interest; only under such provisoX t

is defined for all time a.s.Px0 . Here we highlight some features. If eitherQ = C = 0, orQ > 0, then
Xt is recurrent; however unlike what happens in the former, the latter is ergodic positive and a stationary
distribution exists. One has.

2.7. Result 4

Assume that conditions Eq. (8) are met. LetP(x;t) : B → R be the conditional probability measure
on the Borelσ−field: P(x;t) ≡ P (Xt ∈ •|X0 = x), ρ(t, y|x) its density. Then we have that

i]ρ(t, y|x) = 1√
2πΣ2b2

exp[−(∆(y)− q(1− e−Qt)− e−Qt∆(x))2

2Σ2
] (17)

where

Σ2(t) ≡ 1− e−2Qt

2Q
, q ≡ C

Q
,Q 	= 0andΣ2 = t, q(1− e−Qt) ≡ CtifQ = 0 (18)
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ii] If Q > 0, the family of probabilistic measures{P(x;t)}t∈R+ is tight. Besides, ast → ∞ it converges
weakly to a limiting distributionπ : B → R independent ofx:

P(x;t)
−−−−→
t → ∞t → ∞π, π(B) ≡

∫
B

√
Q

πb2
exp[−Q(∆(y)− q)2]dy (19)

Proof
It is essentially obtained by using result 3 along with those of [14].

3. The time dependent case

Let (Ω, G, P ) be a complete probability space,Wt a Brownian motion with standard filtrationFt ≡
σ(Ws, s � t), x0 ∈ R. Consider the Ito Eq. (3):

Xt(ø) = x0 +
∫ t

t0

a(s,Xs)ds+
∫ t

t0

b(s,Xs)dWs

wherea, b : R+ ×R → R are given functions. Let

∆(t, x) ≡
∫ x

x0

dx′

b(t, x′)
(20)

Definee±(t) ∈ R̄ as follows: e+(t) = inf{x : b(t, x) = 0, x > x0}, e−(t) = sup{x : b(t, x) =
0, x < x0} or e± = ±∞ if no such point exists. We aim to determine general conditions under which a
strong solutionXt that can be expressed as a function of the form Eq. (2) exists. We have the following.

3.1. Result 5

i] Assume thatb(t, x) is of classC1,1 for t0 � t < ∞, x ∈ R and thatb(t0, x0) 	= 0. Let
t1 ≡ inf{t > t0 : b(t, x0) = 0}. LetQ(t) andλ0(t) be continuous functions and define

f(t) = exp
∫ t

t0

Q(s)ds, L(s, t) ≡
∫ t

s
λ0(t′)dt′;L(t) ≡ L(t0, t) (21a)

and the difussions

W̃t ≡
∫ t

t0

f(t′)dWt′ ; ζt ≡ 1
f

[
W̃t + L(t)

]
(21b)

Assume also that the following conditions hold fort0 � t < t2

∆(t, e±(t)) = ±∞ (22)

a(t, x) = b(t, x)
[
bx
2
+
λ0(t)
f(t)

−Q(t)∆(t, x)−∆t(t, x)
]
, x ∈ (e−, e+) (23)
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ThenXt = g̃(t, ζt) ≡ g(t, W̃t) a.s. P is a strong solution to Eq. (3) relative to(Wt, Ft) for
t ∈ (t0, T ),whereT ≡ min{t1, t2} andg̃(t, z) is the inverse to∆(t, .). In short

Xt = ∆(t, .)−1

(
1

f(t)

[
W̃t + L(t)

])
, a.s.P (24)

solves Eq. (3) under the condition Eq. (23).
ii] A sufficient condition forXt not to explode in finite time with probability1 is thatT ≡ min{t1, t2} =

∞, i.e., that for all time Eqs (22) and (23) hold andb(t, x0) 	= 0. Otherwise blow-up at a given explosion
time te > T may occur.

iii] Assume thatb(t, x) anda(t, x) are of classC1,2 andC0,1 respectively fort0 � t < ∞, x ∈ R.
Then Eq. (3) has an strong solution-up to a random timetexp- of the formXt = g(t,

∫ t
t0
f(t′)dWt′)

for someg of classC1,2(T × R) and f(t) 	= 0 of classC1(T) iff condition Eq. (23) holds where
Q(t) is given by Eq. (21a) andλ0(t) is an arbitrary continuous functions (HereT ⊂ R+). Besides
g(t, W̃t) ≡ ∆(t, .)−1(ζt) is the only strong solution a.s.P .
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