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representable in an explicit form as a functional of the Wiener process. Particular interest bears the problem of d
conditions that guarantee non- explosion of the solution. The necessary as well as sufficient condition is derived.
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1. Introduction

Let(Q2, G, P) be a given complete probability spaél/;, t > 0} a given Brownian motion defined

X, = 20+ /t a(X,)ds + /t b(X,)dW, ¢

to to

Xi(w) =g (t, tf(t')th/> a.s.P (2
to

were obtained and the solution to Eq. (1) was reduced to solving a (deterministic) differential e
In [4—6] Engelbert and Schmidt have considered related questions in the context of weak soly

solutions and the semigroup generated or for other relevant properties. In [12] explicit express
the solution were detailed and a necessary condition that guarantees global solutions was give

In this note we extend the above analysis corresponding to autonomous sde and we determine
and sufficient conditions under which Eg. (1) has a strong solutipof the form Eq. (2), and the ma
stochastic features. A major issue in our study is determining necessary and sufficient condit
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Abstract. In this paper we obtain general conditions under which stochastic differential equations possess a strong solution

etermining

on

it with the standard filtratiod; = o(Ws, s < t), andzy € R some “initial condition”. Here we consider
the problem of determining autonomous (i.e., time independent) stochastic differential equations (sde)

that have an strong solutio¥i : R x Q — E C Rrelative to(W;, F;) that can be expressed in the form

for someg : R* x R — Randf : R — R. We note that in [2] some results in this connegtion

guation.
itions-as

opposed to strong. These formulations, however, generically do not yield explicit representations for the

sions for

n.
necessary
N

ons that
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here we define..,(w) = sup{t > 0: X; € R}. and we say that explosion occurdift.y, < co) > 0.
Under rather general conditions, only two possibilities obtain: the probability¥haxplodes in finit
time is either zero or one. We determine the probability of explosion. We evaluate all the

measures of the process, which allows us to classify the nature of boundaXiesRécurrent properti

(U f)(z) = B, f(X:) generated by X }.
We carry out the analysis corresponding to the non autonomous or time dependent sde

¢ ¢
X =29 —|—/ a(s, Xs)ds —|—/ b(s, Xs)dWs 3
to to

Assuming some differentiability on the coefficientsh : R x R — R, we give both necessary
well as sufficient conditions under which the strong solutionrelative to(W;, F;) can be express

of the solution.

2. Thetimeindependent case; conditionsfor explosion

not been addressed at all. Here we solve these problems.
Consider the Ito Eq. (1) witi; a Brownian motion and(zy) # 0. For given constant§' and @,
define the difussiok(y,t > to} by

t
G = I:Wt +C f(t/)dt/] /f§ f(t) = et (4

to

where we introduce\ : R — R and the difussionV; by

B T d(L’l s t ,
Ax) = / i W= [ (5

Define the endpoints_, e, € R as follows:(e_, ey ) is the biggest interval wita_ < xy < e, suck
thatA(z) is finiteVz € (e_, e4). Call exploding an endpoirtthat satisfie$A (e)| < oo, nonexplodin
in the opposite case. Letbe the first exit time of, of the intervallU = (A(e—), A(e+)). Then, th
following holds.

guarantee that the solution is not exploding, and the law of the explosiort tim&henever relevar

ot

e
Feller’s
eSS

and the existence of a stationary measure are also considered. We also determine the gemigroup

as
ed

a.s. P as a function of the form Eqg. (2), and corresponding to these cases we detail that representation

As has been already commented, in the sequel we aim to determine when does a strong solution with
the representation Eq. (2) exist, and in this case, the main stochastic features of the solution. Generically,
even if such a solution exists, it it might break down at a given random time, or the explosion time
texp(w), Where we definee, (w) = inf{t > 0 : X; ¢ R}. If P(texp < 00) > 0 we say that explosion
occurs. An overriding issue is to determine the law of that time, and in particular give conditians that
guarantee that the solution exists for all time. In this connection in [12] a condition that guarantees
globality is given. The opposite issue, namely, to set forth necessary and sufficient conditions for the
solution to explode in finite time and in this case, determine the distribution of the explosion time, has

D -~
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2.1. Resultl

i] Assume thab is of classC'! and thata, b satisfy

a(x) = %z +C — QA(z)| b(z) (6

Va € (e_, ey ). Then, X, defined by the implicit representation
Ct(w) = A(Xy(w)) as.P, w e Q (7

solves Eq. (1) fot < 7, andtey, = 7.
ii] The state space of the difussi¢X;,t > 0} is given byE = (e_, e ).
iii] X; does not explode in finite time with probabilityiff

Alen)] = Ales) = o0 (8

Here we have introduced
Ale ) =ze_ lim A(z),Aeq) =2 T eq lim A(z) 9

iv] If bis of classC? anda is of classC' then a necessary condition for Eq. (1) to have an strong
solution of the form Eq. (2) witly of classC'? andf of classC'! is that there exists constarnitsQ such
that f () = ¢?! and that Eq. (6) holds locally.

2.2. Remarks

1. If bis twice differentiable and Eq. (6) holds, thepexists and is continuous on any closed interval
containedine_, e ) and they are both locally Lipschitzian there. Strong uniqueness of the solution
up to the explosion time follows.

2. Further insight in the solution can be gained by notlng the following. A Wiener prd&’@ES(ISt‘

on (€, G, P) such thatV, = Ww(t) a.s. P, wherep(t) ft f2(s)ds =< W; >. IndeedV; is a

a

local martingale, and the time change formula for Ito integrals- [9,13]-guaranteel§/1;haﬂ also
a Brownian motion where we defing = inf{s > 0 : o(s) > t}. (If ¢(c0) < oo thenW,, has
the same law than Brownian motion up to timéo)). Sincep(t) is strictly increasing it has an
inverse and the result follows with/; = W,,.

3. Whenb : R — R* is a never vanishing function of clags'(R), then—e_ = e, = oo, EQ. (8
amounts to the conditioyﬁiOO % = oo and we recover the results of [12].

4. Given the standard filtration of—fieldsG; = 0(X,,0 < s < t) T G C G, We use for anyr o,
measurablg : Q@ — R, E, (§) = E({|Xo = zp). Note thatG; C F; = o(W,,0 < s < t) and
G; = F; if Efg. (8) holds .

2.3. Result 2
Under the conditions of result Eq. (1) and with = A(e4.), the probability that the solution does hot

explode in finite time is given by
i] if both endpoints are exploding

P,, (X, does not explode in finite timje= 0 (10
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ii] if only one of the endpoints, say, , is exploding theni.1lf either@ > 0,0rQ = C =0

P, (X; does not explode in finite timje= 0, (11a
ii.2] Q = 0.
P,, (X; does not explode in finite time= 1 — exp(2Cuy),C < 0C < 00,C > 0 (11b

ii.3] Q < 0. With g = % one has that
U1 Q7

P,, (X, does not explode in finite tinje= m, (11c

iii] If neither point is exploding

P,, (X, does not explode in finite tinje= 1 (12

In particular if either > 0, or @ = C = 0, the following zero-one law holds

P,, (X, does not explode in finite tinje= 1 < |u_| = u4 = oo 0, otherwise Eq. (13) (1

Proof

By the above discussion the solution explodes at a timg(w) that equals the first exit time af
of the intervalU. Hence the proof is a matter of determining the corresponding probabilities {
diffusion ¢; and will be skipped.

2.4. Recurrence properties of the process

The recurrence properties of the process Eq. (7) and a classification of its boundary point
explicitly determined, as it is shown next. We recall several well known concepts that, after Felle
classify these matters. B is the Borelo- field the scale and the speed measufiel/ : B — R are
defined by

== xﬁ a,xr) = ' p(Z) zZ, Tr) = ex : a(Z) yA
Saa) = [ e Maa) = [ Bl g zewl2 [ 52 (14a

and the extension theorem. These measures are generated by distribution fuietiongz). Finally
the Feller function&(a, ), Q(a, z) are defined as

Sa.0) = [ " S(a,y)dm(y); Qa,x) = / " M(a,y)ds(y) (14b

The reader is referred to [1,3,10,11] or [15].

or the

S can be
2r [7,8],

We next evaluate the above functions and classify the boundaries of the process in terms of the signed

measure\(y; z) = A(z) — A(y).
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2.5. Result 3

Assume the conditions of result 1 hold.|&&(e)| < oo the boundary is regular:attracting attainable.
Otherwise one has according to the values of the consfarigsthat

1) fC =Q =0,eis natural.
2) Q =0,C > 0. eis natural ife = e_, is attracting and not attainabledf= e, .
3) Q@ =0,C <0. eisnatural ife = e, is attracting and not attainabledf= e_.

4) @ > 0. eis natural.
5) @ < 0. eis attracting but nonattainable .

Proof
The proof uses the fact that all Feller functions can be evaluated in an explicit way using Eq. (7). For

example in the simplest case wh@n= C' =0 is

M(y,xz) = S(y,x) = Ay, z) = Az) — Ay) (15

Sy, ) = 2y 2) = 5 A%y, 2) a6

It is then clear that the boundaeyis natural iff A(e) = co. If A(e) < oo, using Feller’s criterion
we conclude that in this case there is positive probability for the boundary to be reached in finite time
P, {7e < o0} > 0. Hence the boundary is attracting and attainable.

2.6. Ergodic properties
The situation corresponding to condition Eg. (8) bears particular interest; only under such pfgviso
is defined for all time a.sP,,. Here we highlight some features. If eiti@r= C = 0, or @ > 0, ther

X is recurrent; however unlike what happens in the former, the latter is ergodic positive and a stationary
distribution exists. One has.

2.7. Result 4

Assume that conditions Eq. (8) are met. ligt.;) : B — R be the conditional probability measure
on the Boreb —field: P,.,) = P(X; € | Xy = 1), p(t,y|) its density. Then we have that

(Aly) —q(1 — e~ %) — e A(x))?

. 1
i]p(t, ylz) = ooy exp[— 552 ] (g
where
1— —2Qt
Y2(t) = 26%@ q= % Q # 0andX? = t,¢(1 — e 9) = CtifQ = 0 (18
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[2)

ii] If @ > 0, the family of probabilistic measuré¢#” .., },c r+ is tight. Besides, as— oo it converge
weakly to a limiting distributionr : B — R independent of:

Pt = 3t = oom,w(B) = [ /25 expl-Q(aw) — o)y (19

Proof
It is essentially obtained by using result 3 along with those of [14].

3. Thetime dependent case

Let (2, G, P) be a complete probability spadd]; a Brownian motion with standard filtratioR, =
o(Ws,s < t), z9 € R. Consider the Ito Eq. (3):

¢ ¢
Xi(0) ::C0+/ a(s,Xs)ds+/ b(s, Xs)dWs

to to

wherea,b : RT x R — R are given functions. Let

Alt,z) = / ' b (‘tl“’“x,) (20

Definee.(t) € R as follows: e, (t) = inf{x : b(t,z) = 0,2 > 20}, e_(t) = sup{z : b(t,z) =
0,z < zo} orex = £o0 if no such point exists. We aim to determine general conditions under which a
strong solutionX; that can be expressed as a function of the form Eqg. (2) exists. We have the following.

3.1. Result5

i] Assume thatb(¢, z) is of classC™! for tp < t < oo,z € R and thatb(tg,z¢) # 0. Let
t1 = inf{t >ty : b(t,z9) = 0}. LetQ(t) andAo(t) be continuous functions and define

f(t) =exp tQ(s)dS, L(s,t) = /t Xo(t)dt'; L(t) = L(to, t) (21a
to S
and the difussions
t
W= [ f)awy: ¢ = %[Wt + L(t)] (21b
to

Assume also that the following conditions hold fgr< ¢ < ¢

A(t,es(t)) = o0 (22

—QA(t,z) — Ai(t,x) |, z € (e—,eq) (23
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t € (to, T), whereT = min{tq,t2} andg(t, z) is the inverse ta\(¢, .). In short
1
ft)

solves Eg. (3) under the condition Eqg. (23).

ii] A sufficient condition forX; not to explode in finite time with probabilityis thatl” = min{t¢,t2} =
00, I.e., that for all time Eqgs (22) and (23) hold and, =) # 0. Otherwise blow-up at a given explos
timet. > T may occur.

iii] Assume thab(t, z) anda(t, z) are of clasg!? andC%! respectively forty < t < oo,z € R,
Then Eq. (3) has an strong solution-up to a random timg- of the form X; = g(t, ftto FE)dWy)

for someg of classC(T x R) and f(t) # 0 of classC!(T) iff condition Eq. (23) holds whe
Q(t) is given by Eq. (21a) and,(t) is an arbitrary continuous functions (Hefec R™). Beside
g(t, W;) = A(t,.)"(¢) is the only strong solution a.$2.

X = At, )L ( [Wt + L(t)]) ,a.s.P (24
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