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Abstract

The Darboux transformation provides an iterative approach to the generation of exact solutions for an integrable system. This
process can be simplified using the Bäcklund transformation and Bianchi’s theorem of permutability; in this way we construct a
nonlinear superposition formula, that is, an equation relating a new solution to three previous solutions. In general this equation
will be a differential equation; for some examples, such as the Korteweg–de Vries equation, it is a linear algebraic equation.
This last is what happens also in the case of the system discussed in this Letter. The linear algebraic nonlinear superposition
formula obtained here is a new result. As an example, we use it to construct the two soliton solution, as well as special cases
of this last which give rise to solutions exhibiting combinations of fission and fusion. Solutions exhibiting repeated processes
of fission and fusion are new phenomena within the area of soliton equations. We also consider obtaining solutions using a
symmetry approach; in this way we obtain rational solutions and also the one soliton solution. 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

One way of approaching the problem of constructing exact solutions for partial differential equations (PDEs)
is the application of symmetry methods to reduce the equation to ordinary differential equations (ODEs). Another
approach is to use the Darboux transformation (DT) to compute a new solution from a given one. The advantage
of the last method is that it allows the possibility of iterating between solutions although it involves solving at each
step for the eigenfunction of the Lax pair, i.e., solving a differential equation whose coefficients contain a previous
solution of the equation.

The knowledge of the Bäcklund transformation (BT) for the system can be alternatively used to construct what
is called a nonlinear superposition formula which provides a solution of the system in terms of three other known
solutions. The advantage of this procedure is that this formula is in general simpler to solve than solving for the
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eigenfunction of the Lax pair at each step. Thus, for the Korteweg–de Vries equation the nonlinear superposition
formula is just an algebraic equation [1]. For other equations with higher order Lax pairs such as the ones analyzed
in [2] the nonlinear superposition formula is still a linear ordinary differential equation but of lower order than
the spatial part of the Lax pair. We note that nonlinear superposition formulae can also be constructed using the
bilinear formalism (see, for example, [3–5]).

We consider in this Letter the problem of constructing exact solutions for the system

(1)uxx +wt + 1

2
(uxut )x = 0,

(2)wx + utxxx + wutx + 1

2
(uxwt + utwx) = 0,

using both the symmetry method and the BT to construct a nonlinear superposition formula. The system (1), (2) is
the first negative flow of the classical Boussinesq hierarchy and was first presented in [6] together with its Lax pair,
DT and the one soliton solution. Details of the standard(1+ 1)-dimensional hierarchy in different coordinates can
be found in [7–13].

The structure of the Letter is as follows. In Section 2 we apply the Lie symmetry group method to obtain exact
solutions through similarity reductions. For a description of this well-known method see, for example, [14–16].
We obtain that in this case classical and nonclassical symmetries [17] provide the same similarity reductions. The
travelling wave reduction yields the one soliton solution and a rational solution whereas the scaling symmetry of
the system yields a fourth order ODE that passes the Painlevé test. In Section 3 we use the Lax pair and DT to
obtain the BT and the nonlinear superposition formula that allows the iterative generation of solutions. We find that
rather than obtaining a differential equation, this nonlinear superposition formula is, as it is for the Korteweg–de
Vries equation, just a linear algebraic equation. We finally use this result to construct as an example the two soliton
solution for the system which, under certain choices of the arbitrary constants, exhibits phenomena of fission and
fusion. Section 4 is devoted to conclusions.

Both the nonlinear superposition formula and the two soliton solution presented here are new. Also new are our
solutions of (1), (2) exhibiting fission and fusion; in particular we note that the repetition of processes of fission
and fusion obtained here is a new development in soliton phenomenology.

2. Lie symmetry reductions

The application of the classical Lie group method [14–16] requires considering a one-parameter Lie group of
infinitesimal transformations in the variables(x, t, u,w) given by

(3)x → x + εξ(x, t, u,w)+ O
(
ε2),

(4)t → t + ετ(x, t, u,w)+ O
(
ε2),

(5)u → u+ εφ1(x, t, u,w)+O
(
ε2),

(6)w → w + εφ2(x, t, u,w)+ O
(
ε2),

where ε is the group parameter. The condition that the above transformation leaves invariant the PDE under
consideration yields an overdetermined system of linear equations for the infinitesimalsξ(x, t, u,w), τ (x, t, u,w),
φ1(x, t, u,w) andφ2(x, t, u,w). The associated Lie algebra consists then of vector fields of the form

(7)v = ξ(x, t, u,w)
∂

∂x
+ τ (x, t, u,w)

∂

∂t
+ φ1(x, t, u,w)

∂

∂u
+ φ2(x, t, u,w)

∂

∂w
.
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Once the infinitesimal generators have been determined, the symmetry variables for the associated reduction can
be found by solving the characteristic equations

(8)
dx

ξ(x, t, u,w)
= dt

τ (x, t, u,w)
= du

φ1(x, t, u,w)
= dw

φ2(x, t, u,w)
.

For the system (1), (2) the infinitesimal are

(9)ξ = c0x + c1,

(10)τ = f (t),

(11)φ1 = −2f (t) + c2,

(12)φ2 = −2vc0,

wheref (t) is an arbitrary function oft andc0, c1 andc2 are arbitrary constants. The method of Lie symmetries can
be generalized to obtain what is called nonclassical or conditional symmetries (see, for example, [17]), which in
principle could provide new reductions. We have evaluated the nonclassical symmetries withτ �= 0 for the system
(1), (2) and we conclude that the infinitesimals are precisely the ones given above for the classical symmetries, and
thus no further reductions are possible in this case.

The above infinitesimal generators provide for the system (1), (2) two different symmetry reductions, according
as to whetherc0 is zero or different from zero, that we consider now in detail.

1. Casec0 = 0. In this case we can setc1 = 1 andc2 = 0 without lost of generality. Solving the characteristic
equations (8) we find the travelling wave reduction

(13)u(x, t) = P(z) − 2t, w(x, t) = Q(z), z = x −F(t),

whereF(t) is defined asdF(t)/dt = f (t)−1. The associated system of ODEs is

(14)PzPzz + Qz = 0,

(15)Pzzzz + QPzz +PzQz = 0,

which can be written as a scalar equation after eliminatingQ, and the result is

(16)y2
z − 1

4

(
y4 − Ay2 − By − C

) = 0,

whereQ = 1
4(A − 2y2) and we have sety(z) = Pz and performed three integrations (A, B andC are the three

constants of integration). It is this ODE that will provide the soliton solutions. This equation can be solved in
general in terms of elliptic functions. However, under certain constraints on the constants of integration we can
obtain rational solutions or solutions in terms of hyperbolic functions. ForA = 6a2, B = −8a3 andC = 3a4 we
obtain the solution

(17)y(z)= a[a2(z + δ)2 + 3]
a2(z + δ)2 − 1

,

whereas for the choiceA = 2(3γ 2 − 2k2), B = 8γ (k2 − γ 2) andC = γ 2(3γ 2 − 4k2) the solution is

(18)y(z)= γ − 2k2

γ cosh[k(z+ δ)] + k sinh[k(z+ δ)] + γ
,

whereδ is a constant of integration for both solutions. These two solutions provide solutions for the original system
of PDEs by using the corresponding similarity reduction (13). In this way we obtain the rational solution

(19)u = a(x − F)− 2t + 2 log

[
a(x − F + δ)− 1

a(x − F + δ)+ 1

]
,



290 P.R. Gordoa, J.M. Conde / Physics Letters A 295 (2002) 287–298

(20)w = a2

2

{
3−

[
3+ a2(x −F + δ)2

1− a2(x −F + δ)2

]2
}
,

and the soliton solution

(21)u = γ (x − F) − 2t − 2 log

{
γ

2
+ k

2
tanh

[
k

2
(x − F + δ)

]}
,

(22)w = 3

2
γ 2 − k2 − 1

2

{
γ − 2k2

γ cosh[k(x − F + δ)] + k sinh[k(x − F + δ)] + γ

}2

.

We note here that sinceu is in fact a potential we will be considering in what follows(ux,w), with u andw given
as above, as the one soliton solution.

2. Casec0 �= 0. We takec0 = 1 and setc1 = c2 = 0 without lost of generality. The similarity variables associated
to this scaling reduction are

(23)u(x, t) = P(z) − 2t, w(x, t) = F(t)2Q(z), z = F(t)x,

where in this caseF(t) is defined via the expressiondF(t)/dt = −F(t)/f (t), and the associated system of ODEs
is

(24)zQz + zPzPzz + 1

2
P 2
z + 2Q = 0,

(25)zPzzzz + zQPzz + zPzQz + 2QPz + 3Pzzz = 0.

We can solve forQ as

(26)Q = −1

2

2z(yzzz − y2yz)− y3 + 6yzz
zyz

,

where againy(z) = Pz, and then, after eliminatingQ, we can write this system of ODEs as the following fourth
order scalar ODE

(27)2z2yzyzzzz − 2z2yzzyzzz + 10zyzyzzz − 6zy2
zz + 6yzyzz + zy3yzz − 6z2yy3

z − 8zy2y2
z − y3yz = 0.

It can be easily proved that the above equation passes the Painlevé test. A linear problem for the system (24), (25) is
given in Appendix A. Moreover, Eq. (27) has one symmetry that we can use to integrate it once. The Lie symmetry
method for ODEs as described, for example, in [16] provides the change of dependent and independent variables

(28)y(z)= ξe−s(ξ), z = es(ξ),

which yields a third order ODE in the variablesξ . Setting nowsξ = m(ξ)/ξ we can reduce Eq. (27) to the third
order ODE,

2ξ2m2(m − 1)mξξξ − 2ξ2m(10m− 9)mξmξξ − 6ξm2(m − 1)(m− 2)mξξ

+ 6ξ2(5m − 4)m3
ξ + m2(4m3 − ξ2m3 − 18m2 + 26m− 12

)
mξ

(29)+ 2ξm
(
9m2 − 28m+ 18

)
m2

ξ + ξm5(m − 1)(m − 2)(m− 3) = 0.

This equation contains no symmetries and no further integration is possible by using the symmetry approach.
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3. Bäcklund transformation, nonlinear superposition formula and soliton solutions

In what follows and for reasons of convenience we will write the system (1), (2) in the form

(30)uxx + vtx + 1

2
(uxut )x = 0,

(31)vxx + utxxx + vxutx + 1

2
(uxvtx + utvxx) = 0,

wherew = vx . The system (30), (31) arises as the compatibility condition of the second order Lax pair [6],

(32)ψxx = 1

2
(ux − 2λ)ψx − 1

4
(v − ux)xψ,

(33)ψt = − 1

2λ
(ut + 2)ψx − 1

4λ
(v − ux)tψ,

where the constantλ is the spectral parameter. The DT for (30), (31) given in [6] has the form

(34)ũ = u+ 2 log
ψ

ψx
,

(35)ṽ = v − ux + 2

[
ψx

ψ
− 1

4
(v − ux)x

ψ

ψx

]
,

and relates two solutions(u, v) and(ũ, ṽ) of the system (30), (31). It is well-known that the DT of an equation
together with the Lax pair can be used to iterate between solutions, since given an initial solution one can solve
for the eigenfunction of the Lax pairψ and use the DT to obtain a new solution. This process requires at each step
solving a differential equation. An alternative way of iterating between solutions is to apply Bianchi’s theorem of
permutability to the corresponding BT. We will see that in this way the process of iterating the DT is reduced for
the system (30), (31) (just as it is for the Korteweg–de Vries equation) to the problem of solving a linear algebraic
equation forũ. As an application of this result, we will see how it can be used to obtain the two soliton solution.

The BT for the system (30), (31) can be obtained by eliminatingψ between the Lax pair (32), (33) and the
DT (34); the result is,

(36)px + p2 − 1

2
(ux − 2λ)p + 1

4
(v − ux)x = 0,

(37)pt + 1

2λ
utxp + 1

2λ
(ut + 2)px + 1

4λ
(v − ux)tx = 0,

wherep = exp[−1
2(ũ − u)] = ψx

ψ
. Then we have from (35) that the new solutionṽ can be easily written in terms

of p (and so in terms of̃u) as

(38)ṽ = v − ux + 2p − 1

2
(v − ux)x

1

p
,

and the problem is reduced to the one of finding an expression forũ.
Let us consider the system (30), (31) and the corresponding spatial part of its BT given by (36). Let us suppose

that we generate two solutions(uj,1, vj,1) and(uj,2, vj,2) of the system (30), (31) beginning with the same initial
solution(uj−1, vj−1) but different spectral parametersλ1 andλ2, respectively. This then gives two different copies
of Eq. (36): one withp = exp[−1

2(uj,1 − uj−1)] andλ = λ1 and the other withp = exp[−1
2(uj,2 − uj−1)] and

λ = λ2,

(39)(uj,1)x = 2e− 1
2 (uj,1−uj−1) + 1

2

[
vj−1 − (uj−1)x

]
x
e

1
2 (uj,1−uj−1) + 2λ1,

(40)(uj,2)x = 2e− 1
2 (uj,2−uj−1) + 1

2

[
vj−1 − (uj−1)x

]
x
e

1
2 (uj,2−uj−1) + 2λ2.
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Let us suppose now that we construct another solution(uj+1,12, vj+1,12) starting from(uj,1, vj,1) and with spectral
parameterλ2 and also a solution(uj+1,21, vj+1,21) starting from(uj,2, vj,2) and with spectral parameterλ1. Then
we can write again two copies of Eq. (36): one withp = exp[−1

2(uj+1,12 − uj,1)] andλ = λ2 and the other one
with p = exp[−1

2(uj+1,21 − uj,2)] andλ = λ1,

(41)(uj+1,12)x = 2e− 1
2(uj+1,12−uj,1) + 1

2

[
vj,1 − (uj,1)x

]
x
e

1
2 (uj+1,12−uj,1) + 2λ2,

(42)(uj+1,21)x = 2e− 1
2(uj+1,21−uj,2) + 1

2

[
vj,2 − (uj,2)x

]
x
e

1
2 (uj+1,21−uj,2) + 2λ1.

If we now use the theorem of permutability, which states thatuj+1,21 = uj+1,12 (in what follows we will denote
uj+1,21 = uj+1,12 = uj+1 for simplicity), we can eliminate the first derivative ofuj+1 between (41) and (42) and
we obtain

(43)G2
j+1

{[
vj,1 − (uj,1)x

]
x
G−1

j,1 − [
vj,2 − (uj,2)x

]
x
G−1

j,2

} + 4Gj+1(λ2 − λ1)+ 4(Gj,1 − Gj,2) = 0,

whereGj,1 = e
1
2uj,1, Gj,2 = e

1
2uj,2, andGj+1 = e

1
2uj+1. The expression above is a quadratic polynomial inGj+1

which allows us to obtain a new solutionuj+1 just by solving an algebraic equation.
This polynomial can still be simplified. Similarly to the four copies written before, we have in an analogous

way four different copies of Eq. (38). The first two of these (those withp = exp[−1
2(uj,1 − uj−1)] and

p = exp[−1
2(uj,2 − uj−1)]), together with Eqs. (39) and (40) can be used to eliminate in (43) the derivatives

of (uj,1, vj,1) and(uj,2, vj,2). In this way we obtain that the polynomial (43) factorizes as

[
Gj+1 − 4

Gj−1

(uj−1)xx − (vj−1)x

][
Gj+1 + 4Gj−1(Gj,2 − Gj,1)

4Gj−1(λ1 − λ2)+ (Gj,2 − Gj,1)[(uj−1)xx − (vj−1)x]
]

= 0,

(44)

whereGj−1 = e
1
2uj−1. The first factor of the above expression provides a simple solution in terms of(uj−1, vj−1)

and so in terms of just one of the three preceding solutions. It is the second factor,

(45)Gj+1 = Gj−1

(λ2−λ1)
(Gj,2−Gj,1)

Gj−1 − [(uj−1)xx−(vj−1)x ]
4

,

that will allow the iterative generation of solutions, a problem which has now been reduced to the one of just

solving a linear algebraic equation forGj+1. In fact, using thatGj+1 = e
1
2uj+1 andGj−1 = e

1
2uj−1, we can obtain

uj+1 as

(46)uj+1 = uj−1 − 2 log

[
(λ2 − λ1)

(Gj,2 − Gj,1)
Gj−1 − [(uj−1)xx − (vj−1)x]

4

]
,

in terms of three previously known solutions(uj−1, vj−1), (uj,1, vj,1) and (uj,2, vj,2) of the system (30), (31).
This result is new and it allows the iterative generation of solutions for this system without solving a differential
equation. Moreover, since only the spatial part of the BT is used in this process, the nonlinear superposition
formula (46) will hold for the entire classical Boussinesq hierarchy, and is in fact a new result for the equations
of that hierarchy including for the classical Boussinesq equation itself. We note that here we concentrate on the
system (30), (31) because of the new kinds of interesting classes of solutions that it possesses.

As an application of the above, we now derive the two soliton solution for the system (30), (31). In order to do
so, we first need the expression for the one soliton solution that we generate now from the Lax pair and DT.
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3.1. The one soliton solution

We consider in this subsection the derivation of the one soliton solution by using the Lax pair (32), (33) and the
DT (34), (35). We start with the simple solution

(47)u0 = 2(γ + λ)x + g(t) − 2t,

(48)v0 = (
γ 2 − k2)x,

and solving for the eigenfunction of the Lax pair (32), (33) we obtain that the one soliton solution (that we will
denote by(u1s, v1s)) is given by(ũ, ṽ) in the DT (34), (35), this is,

(49)u1s = u0 + 2 log
ψ

ψx

,

(50)v1s = v0 − (u0)x + 2

[
ψx

ψ
− 1

4

[
v0 − (u0)x

]
x

ψ

ψx

]
,

with

(51)
ψ

ψx

= 2
1+ exp

[
k
(
x − g(t)

2λ + δ
)]

(γ + k)exp
[
k
(
x − g(t)

2λ + δ
)] + (γ − k)

.

It is easy to see that this solution agrees with the solution (21), (22) obtained through symmetry analysis in the
special caseλ = −γ /2 andg(t) = −γF(t). Here however we will be takingλ = −γ in the above for the one
soliton solution so thatux (the physical field in the standard classical Boussinesq system) satisfies zero boundary
conditions. We note here that since bothu andv are potentials we will be considering the derivatives of(u1s, v1s)

with respect tox (and withλ = −γ ) as the one soliton solution. We note here that the above expression for the one
soliton solution whenu0 = t can be found in [6].

3.2. The two soliton solution

We come back now to the problem of constructing the two soliton solution for (30), (31) by using the nonlinear
superposition formula (46). We takej = 1 and consider the special case in which(uj,1, vj,1) and (uj,2, vj,2)

are two different copies of the one soliton solution that for simplicity we will denote by(u1, v1) and (u2, v2),
respectively. This means that we start with the same initial solution(u0, v0) and construct two copies of the one
soliton solution(u1, v1) and(u2, v2) with different values of the spectral parameter (λ1 andλ2, respectively); since
we have taken for the one soliton solutionλ = −γ this means different values ofγ andk, sayγi andki for i = 1,2.
These two copies will be

(52)ui = u0(t) + 2 log
ψi

(ψi)x
,

(53)vi = (
γ 2
i − k2

i

)
x + 2

[
(ψi)x

ψi

− 1

4

(
γ 2
i − k2

i

) ψi

(ψi)x

]
,

with

(54)
ψi

(ψi)x
= 2

1+ exp
[
ki

(
x + u0(t)

2γi
+ t

γi
+ δi

)]
(γi + ki)exp

[
ki

(
x + u0(t)

2γi
+ t

γi
+ δi

)] + (γi − ki)
,

for i = 1,2 and where we have taken into account thatλi = −γi , u0 = u0(t) andv0 = (γ 2
1 − k2

1)x = (γ 2
2 − k2

2)x

since we start with the same initial solution(u0, v0). The two soliton solution, that we will denote byu2s is then



294 P.R. Gordoa, J.M. Conde / Physics Letters A 295 (2002) 287–298

obtained from the nonlinear superposition formula (46)

(55)u2s = u0 − 2 log

[
γ1 − γ2

G2 − G1
G0 + 1

4
(v0)x

]
= u0 − 2 log

[
γ1 − γ2

ψ2/(ψ2)x − ψ1/(ψ1)x
+ 1

4
(v0)x

]
,

where we have used the definition ofGi . Finally we can write the two soliton solution as

(56)u2s = u0 + 2 log
Φ

Φx

,

with

(57)
Φ

Φx

= 4
1+ eη1 + eη2 + a12e

η1+η2

b0 + b1eη1 + b2eη2 + b12eη1+η2
,

and whereηi = ki(x + u0
2γi

+ t
γi

+ δi)+ αi . The constantsα1 andα2 are defined by

(58)eα1 =
(
γ1 + k1 − γ2 + k2

γ1 − k1 − γ2 + k2

)
,

(59)eα2 =
(
γ2 + k2 − γ1 + k1

γ2 − k2 − γ1 + k1

)
,

and the constants in (57) are given by

(60)a12 = (γ1 − k1 − γ2 + k2)(γ1 + k1 − γ2 − k2)

(γ1 − k1 − γ2 − k2)(γ1 + k1 − γ2 + k2)
,

(61)b0 = (γ1 − k1)(γ2 − k2),

(62)b1 = (γ1 + k1)(γ2 − k2),

(63)b2 = (γ1 − k1)(γ2 + k2),

(64)b12 = (γ1 + k1)(γ2 + k2)a12.

The corresponding expression forv2s can be now obtained from (38),

v2s = vi − (ui)x + 2
Gi

G0

Φx

Φ
− 1

2

[
vi − (ui)x

]
x

G0

Gi

Φ

Φx

(65)= vi − (ui)x + 2
ψi

(ψi)x

Φx

Φ
− 1

2

[
vi − (ui)x

]
x

(ψi)x

ψi

Φ

Φx

,

where we can takei = 1 or i = 2 in the above. It is important to keep in mind that the constantsk1, k2, γ1 andγ2
are subject to the constraintγ 2

1 − k2
1 = γ 2

2 − k2
2 since we start with the same initial solution(u0, v0).

The two soliton solution given by the derivative of (56) has a rich variety of different behaviours given by
the arbitrary function of timeu0(t). In Fig. 1 we have plotted the two soliton solution for two specific values of
u0. Fig. 1(a) represents two solitons that interact, slow down and accelerate again after the interaction. Fig. 1(b)
shows two solitons travelling in opposite directions, slowing down, interacting, and then accelerating away from
the interaction with their directions reversed.

This behaviour of the two soliton solution corresponds to the general case in which the only constraint between
the parameters is the one given byγ 2

1 − k2
1 = γ 2

2 − k2
2. However there are some special cases of particular interest

that correspond to solutions which are also solutions of the first negative flow of the Burgers hierarchy inux (see [6]
and [18]), i.e.,

(66)uxx + uxxt + 1

2
(uxut )x = 0,
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(a)

(b)

Fig. 1. Novel interactions of solitons. Thex-derivative of solution (56) with (a)u0(t) = sin(t/80)cosh(t/15) − 2t − 1, δ1 = −α1/k1,
δ2 = −α2/k2, k1 = 0.055,γ1 = −0.1 andk2 = 0.07. (b)u0(t) = sech(t)cos(t/10) + t2, δ1 = −α1/k1, δ2 = −α2/k2, k1 = 0.075,γ1 = −0.1
andk2 = 0.08.
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to which the system (30), (31) reduces whenvx = uxx . They correspond to the choiceγ2 = −k2 andγ1 = −k1,
for which b12 = a12 = b1 = b2 = 0 andb0 = 4k1k2. These kind of solutions represent interactions in which two
incoming kinks collide to give one kink (fusion) or in which a single kink splits into two kinks (fission). We note
that such behaviour is of course already known for the classical Boussinesq system itself [19–21]. It has also been
explored in [22], although the results in this last appear to have different underlying explanation than those of [19–
21]. Here we have an extension of the results of [19–21] whereby the system studied supports solutions in which
combinations of these processes of fission and fusion are possible; thus in Fig. 2 we see that, for an appropriate
choice of the functionu0(t), both behaviours may occur for the same solution. Fig. 2(a) shows one kink splitting
into two kinks that then fuse together into a single kink, and then split again and accelerate away from each other.
Fig. 2(b) shows two incoming kinks fusing to give a single kink and then splitting again to give two kinks.

4. Conclusions

In this Letter we have considered a(1+1)-dimensional integrable system from the point of view of constructing
exact solutions. The Lie symmetry approach provides travelling wave and scaling symmetries; we obtain with this
approach rational solutions and also the one soliton solution. However, we consider of more interest the problem
of iterating between solutions that we tackle by using the BT for the system in order to construct a nonlinear
superposition formula. This nonlinear superposition formula consists for this system, as it does for the Korteweg–de
Vries equation, of a linear algebraic equation rather than a differential equation. We thus find an explicit expression
that does not involve any integration and which allows us to obtain a new solution of the system in terms of three
previously known ones. Our nonlinear superposition formula holds for the entire classical Boussinesq hierarchy;
as far as we are aware a linear algebraic nonlinear superposition formula is a new result for the equations of this
hierarchy. As an example, we have used this formula to construct the two soliton solution and also other kinds of
solutions, such as the particular case of the two soliton solution which exhibits fusion and fission of solitons. For
all cases, the presence of an arbitrary function oft in the solution ensures a wide range of interesting behaviours.
Solutions exhibiting repeated processes of fission and fusion constitute a new result.
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Appendix A. Linear problem for the system (24), (25)

The Lax pair for the system (32), (33) can be used to obtain a linear problem for the system of ODEs (24), (25).
Using the similarity reduction (23) in the spatial part of the Lax pair (32), remembering thatw = vx and setting
µ = 2(λ/F ) yields

(A.1)ψzz = 1

2
(Pz − µ)ψz − 1

4
(Q − Pzz)ψ,

where nowψ = ψ(z,µ). Now we use the reduction (23) in the time part of the Lax pair (33) and use the fact that
in this reductionψ is now a function ofz andµ in order to computeψt . The result is

(A.2)µ2ψµ = [
z(µ+ Pz)

]
ψz + 1

2

[
z(N − Pz)

]
z
ψ,
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(a)

(b)

Fig. 2. Combinations of fusion and fission of solitons. Thex-derivative of solution (56) with (a)u0(t) = t (t2−15), δ1 = −α1/k1, δ2 = −α2/k2,
γ1 = −k1 = 0.85 andγ2 = −k2 = −1.52. (b)u0(t) = t2, δ1 = −α1/k1, δ2 = −α2/k2, γ1 = −k1 = 2 andγ2 = −k2 = −1.5.



298 P.R. Gordoa, J.M. Conde / Physics Letters A 295 (2002) 287–298

whereQ = Nz. The compatibility condition of equations (A.1), (A.2) is precisely the system (24), (25) and so
these two equations constitute a linear problem for this system. It them seems reasonable to expect that the system
(24), (25)—and thus also the third order ODE (29)—will be solvable using the Inverse Monodromy Transform.
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