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EXTENDED ROTATION AND SCALING GROUPS FOR NONLINEAR

EVOLUTION EQUATIONS

P. G. Estevez∗ and C. Qu∗†

A (1+1)-dimensional nonlinear evolution equation is invariant under the rotation group if it is invariant

under the infinitesimal generator V = x∂u − u∂x. Then the solution satisfies the condition ux = −x/u.

For equations that do not admit the rotation group, we provide an extension of the rotation group. The

corresponding exact solution can be constructed via the invariant set R0 = {u : ux = xF (u)} of a contact
first-order differential structure, where F is a smooth function to be determined. The time evolution on

R0 is shown to be governed by a first-order dynamical system. We introduce an extension of the scaling

groups characterized by an invariant set S̃0 that depends on two constants ε and n �= 1. When ε = 0, it

reduces to the invariant set S0 introduced by Galaktionov. We also introduce a generalization of both the

scaling and rotation groups, which is described by an invariant set E0 with parameters a and b. When

a = 0 or b = 0, it respectively reduces to R0 or S0. These approaches are used to obtain exact solutions

and reductions of dynamical systems of nonlinear evolution equations.

Keywords: differential evolution equations, rotation group, scaling group

1. Introduction

We consider an (1+1)-dimensional kth-order nonlinear evolution equation of the form

ut = E(x, u, u1, . . . , uk), (1)

where ut = ∂u/∂t is the time derivative and ui denotes the ith partial derivatives ∂iu/∂xi with respect to
the spatial variable x. The function E is a smooth function of the indicated variables. The solutions of
Eq. (1) are assumed to be smooth.

Several developed methods related to the symmetry group theory have been used to construct exact
solutions of nonlinear partial differential equations (PDEs). They include the classical symmetry group
method [1], the nonclassical symmetry group method [2], the generalized conditional symmetry approach [3],
the direct method [4], the differential constraint method [5], and the sign-invariant and invariant-subspace
approach [6], [7]. These methods are related in some sense.

In [8], Galaktionov proposed a nonlinear extension of the ordinary scaling group, which is described by
the invariance of the set S0 = {u : ux = F (u)/x}. The approach has been used to construct exact solutions
of equations of form (1), and it is related to the sign-invariant and invariant-subspace approach as well as
the generalized conditional symmetry approach. At the end of [8], he noted that it is important to give a
nonlinear extension for other nonscaling groups.

The aim in this paper is to introduce some new extensions of rotation groups and scaling groups. In
Sec. 2, we propose a nonlinear extension of the ordinary rotation group in R

2, which is described by the
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invariant set R0 = {u(x) : ux = xF (u)}. In Sec. 3, we introduce a new nonlinear extension of the scaling
group, which is described by the invariant set

S̃0 =
{
u : ux = F (u)/x+ εF exp

[
(n− 1)

∫ u

0

1
F (z)

dz

]}
,

where ε �= 0 and n �= 1 are two constants. If ε = 0, the set reduces to the set S0 introduced by Galak-
tionov [8], [9]. Finally, in Sec. 4, we introduce an extension of both S0 and R0, which is characterized by
the invariant set E0 = {u(x) : ux = f(x)F (u), f ′ = af2 + b}. Section 5 contains concluding remarks.

2. The extended rotation group

2.1. The rotation group. Equation (1) is invariant under the rotation group if it is invariant under
the Lie group of transformations x∗ = x cos θ + u sin θ, u∗ = −x sin θ + u cos θ. This means that it admits
the infinitesimal generator

V0 = x
∂

∂u
− u

∂

∂x
.

If the equation admits the rotation group, the corresponding solution can be obtained by solving ux = −x/u
together with Eq. (1). Indeed, the equation ux = −x/u is the invariant-surface condition corresponding to
the rotation group. In other words, the set {u : ux = −x/u} is invariant under the rotation group. Using
it, we can obtain an exact solution that has the form u = (g(t)− x2)1/2.

2.2. Algebraic differentiation. In the case where Eq. (1) does not admit the rotation group, we
begin our discussion of invariant sets and exact solutions by introducing the set of functions

R0 = {u : ux = xF (u)}, (2)

where F (u) is a C∞ function to be determined from the invariance condition

u(x, 0) ∈ R0 ⇒ u(x, t) ∈ R0 for t ∈ (0, 1].

The structure of the manifold was used to construct the first-order sign invariants for radially symmetric
parabolic equations (see p. 1605 in [6]). For F = −1/u, the contact structure characterizes the rotation
group.

In the general case where

ux = xF (u), (3)

we list several derivatives that are used later:

uxx = x2FF ′ + F,

uxxx = x3F (FF ′)′ + 3xFF ′,

uxxxx = x4F (F (FF ′)′)′ + 6x2F (FF ′)′ + 3FF ′,

(4)

where the prime denotes differentiation with respect to u. We now apply the approach to several typical
nonlinear evolution equations.
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2.3. Quasilinear heat equations. We consider a general reaction–diffusion equation of parabolic
type

ut = D(u)uxx +Q(u)u2
x +G(u) ≡ A1(u), (5)

where D ≥ 0, Q, and G are smooth functions. With formulas (4) substituted in (5), the right-hand side
of (5) becomes

A1(u) = x2(DFF ′ +QF 2) +DF +G.

For u ∈ R0, integrating ux = xF (u) implies that the solution is given by the implicit expression∫ u 1
F (z)

dz =
1
2
x2 + g(t), (6)

where the function g(t) is to be determined. It follows from (6) that

ut = g′(t)F (u). (7)

Therefore, Eq. (5) is equivalent to

g′(t) = x2(DF ′ +QF ) +D +
G

F
.

Because the left-hand side of this equation is independent of x, differentiating it with respect to x yields

x3F (DF ′ +QF )′ + x

[
F

(
D +

G

F

)′
+ 2(DF ′ +QF )

]
≡ 0,

which implies that D, F , and G satisfy

DF ′ +QF = c,

F

(
D +

G

F

)′
= −2c =⇒ D +

G

F
= d− 2c

∫ u 1
F (z)

dz,
(8)

where c and d are arbitrary constants. Consequently, g satisfies the equation

g′ = d− 2cg, (9)

whose general solution is

g =
d

2c
+ c0e

−2ct, (10)

where c0 is another arbitrary constant.
System (8) can be easily solved if we know two of the four functions. We consider several special cases.

Case 1. F = −1/u, D = um. In this case, the invariant set R0 characterizes the rotation group,
namely, the equations are invariant under the rotation group. Solving system (8), we obtain

Q = −cu+ um−1, G = um−1 − cu− du−1.

We have thus shown that the equation

ut = umuxx + (um−1 − cu)u2
x + um−1 − cu− du−1

admits the rotation group and has the exact solution

u =
(
−d

c
− 2c0e−2ct − x2

)1/2

. (11)
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Case 2. F = uk, D = um, k �= −1. In this case, Q = cu−k − kum−1, and G satisfies

G = duk − um+k − 2cuk

∫ u 1
F (z)

dz.

Two subcases are distinguished: k = 1 and k �= 1.
Subcase 2a. k �= 1. We obtain

G = duk − uk+m − 2c
1− k

u,

which means that the equation

ut = umuxx + (cu−k − kum−1)u2
x + duk − uk+m − 2c

1− k
u

has the solution

u =
[
1− k

2

(
x2 +

d

c
+ 2c0e−2ct

)]1/(1−k)

. (12)

Subcase 2b. k = 1. We have

G = du− um+1 − 2cu logu.
The equation

ut = umuxx + (cu−1 − um−1)u2
x + du− um+1 − 2cu logu

has the exact solution

u = exp
[
x2

2
+

d

2c
+ c0e

−2ct

]
. (13)

Case 3. F = uk, D = eu. In this case,

Q = cu−k − ku−1eu, G = duk − uke− 2cuk

∫ u 1
F (z)

dz.

Two subcases arise.

Subcase 3a. k �= 1. Here G is given by

G = duk − ukeu +
2c

k − 1u.

The equation

ut = euuxx + (cu−k − ku−1eu)u2
x + duk − ukeu +

2c
k − 1u

has solution (12).
Subcase 3b. k = 1. Here G takes the form

G = du − ueu − 2cu logu.

The equation

ut = euuxx + (cu−k − ku−1eu)u2
x + du− ueu − 2cu logu

has solution (13).
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Case 4. F = uk, D = 1/(1 + u2). In this case,

Q = cu−k − ku−1(1 + u2)−1, G = duk − uk

1 + u2
− 2cuk

∫ u 1
F (z)

dz.

There are two subcases.

Subcase 4a. k �= 1.

G = duk − (1 + u2)−1uk − 2c
1− k

u.

Subcase 4b. k = 1.

G = du− u(1 + u2)−1 − 2cu logu.
Therefore, the solutions of the equations

ut =
1

1 + u2
uxx + (cu−k − ku−1(1 + u2)−1)u2

x + duk − (1 + u2)−1uk − 2c
1− k

u,

ut =
1

1 + u2
uxx + (cu−1 − u−1(1 + u2)−1)u2

x + du− u(1 + u2)−1 − 2cu logu

are given respectively by (12) and (13).

3. The extended scaling group

3.1. Invariant set. The Lie group of scaling transformations

x∗ = eεx, t∗ = eµεt,

where ε is a parameter, has the infinitesimal generator

X = x
∂

∂x
+ µt

∂

∂t
.

If the function E in Eq. (1) is homogeneous, i.e., if it satisfies the condition

E

(
sx, u,

1
s
u1, . . . ,

1
sm

um

)
=

(
1
s

)µ

A(x, u, u1, . . . , um),

then Eq. (1) admits the self-similar solutions

u = θ(ξ), ξ =
x

t1/µ
, (14)

and the PDE is reduced to an ODE for the function θ,

E(ξ, θ, θ′, . . . , θm) +
1
µ
ξθ′ = 0.

Galaktionov [8], [9] proposed an interesting and natural generalization of the scaling group. He consid-
ered the equation in an invariant set S0 = {u(x) : ux = F (u)/x}, where F is a C∞ function to be determined
from the invariance condition

u( · , 0) ∈ S0 ⇒ u( · , t) ∈ S0 for t ∈ (0, 1].
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It is easy to see that the contact structure of the equation

ux =
1
x
F (u)

includes scaling invariant (14).
For equations without scaling invariance, we introduce the invariant set

S1 =
{
u ∈ C∞, ux =

s

x
F (u) + εF (u) exp

[
(n− 1)

∫ u 1
F (z)

dz

]}
, (15)

where ε, s, and n �= 1 are some constants. If ε = 0, the set S1 is reduced to the invariant set S0. For
simplicity, we consider only the case F = u in the following applications, namely, the invariant set becomes

S2 =
{
u ∈ C∞, ux =

s

x
u+ un

}
, (16)

where ε has been set equal to one without loss of generality. In the set S2, we have the formulas

ux =
s

x
u+ un,

uxx =
1
x2
(s2 − s)u +

1
x
s(n+ 1)un + nu2n−1,

uxxx =
1
x3
s1u+

1
x2
s2u

n +
1
x
s3u

2n−1 + s4u
3n−2,

uxxxx =
1
x4
l1u+

1
x3
l2u

n +
1
x2
l3u

2n−1 +
1
x
l4u

3n−2 + l5u
4n−3,

(17)

where

s1 = (s2 − s)(s− 2), s2 = (n2 + n+ 1)s2 − (n+ 2)s, s3 = 3n2s,

s4 = n(2n− 1), l1 = (s− 3)s1, l2 = s1 + (ns− 2)s2,

l3 = ns2 + [(2n− 1)s− 1]s3, l4 = (2n− 1)s3 + (3n− 2)ss4,

l5 = (3n− 2)s4.

The solution of Eq. (1) in the invariant set S2 is given by

u =
[
− (n− 1)
s(n− 1) + 1x+ g(t)xs(1−n)

]1/(1−n)

, (18)

where g(t) is to be determined. This type of solution has appeared in physical situations, such as a special
“dipole” solution taking this form [10]. In what follows, we consider some applications of the invariant set
S2 to Eq. (1) and derive exact solutions of some parabolic and KdV-like equations.

3.2. Quasilinear heat equations. For the quasilinear heat equation of form (5), we can use the
differentiation rules and compute that

A1(u) =
1
x2
[(s2 − s)uD + s2u2Q] +

1
x
[(n+ 1)sunD + 2sun+1Q] +

+ nu2n−1D + u2nQ+G(u)
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on the set S2. It follows from (18) that

ut =
1

1− n
x−ag′(t)un,

where a = s(n− 1). Hence, g′(t) satisfies
1

1− n
g′(t) = xa−2[(s2 − s)u1−nD + s2u2−nQ] +

+ xa−1[(n+ 1)sD + 2suQ] + xa[nun−1D + unQ+ u−nG] ≡

≡ xa−2D1 + xa−1D2 + xaD3. (19)

Because the left-hand side of this equation is independent of x, differentiating it with respect to x yields

xa−3[suD′
1 + (a− 2)D1] + xa−2[unD′

1 + suD′
2 + (a− 1)D2] +

+ xa−1[unD′
2 + suD′

3 + aD3] + xaunD′
3 = 0,

which gives

suD′
1 + (a− 2)D1 = 0, (20)

unD′
1 + suD′

2 + (a− 1)D2 = 0, (21)

unD′
2 + suD′

3 + aD3 = 0, (22)

D′
3 = 0. (23)

Integrating (21)–(23) gives

D3 = c1,

D2 =
a

n− 1c1u
1−n + c2,

D1 = − a

2(n− 1)2 c1u
2−2n +

a− 1
n− 1c2u

1−n + c3,

where ci, i = 1, 2, 3, are integration constants. Substituting these expressions for D1, D2, and D3 in (20)
implies

(a− 2)c3 = 0,

(a− 1)c2 = 0,

(a+ 2)c1 = 0.

(24)

The case a = −2 yields the trivial solution D = Q = G = 0. Therefore, two possibilities arise.

Case 1. a = 1, c3 = c1 = 0, c2 �= 0. In this case, D, Q, and G satisfy

(s2 − s)u1−nD + s2u2−nQ = 0,

(n+ 1)sD + 2suQ = c2,

nun−1D + unQ+ u−nG = 0,
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which has the solution

D =
1
3
c2,

Q =
n− 2
3u

c2,

G = −2(n− 1)u2n−1

3
c2.

In this case, g(t) satisfies

g′ = (1− n)c2,

which gives

g(t) = (1− n)c2(t− t0).

This means that the equation

ut =
c2
3

[
uxx + (n− 2)u

2
x

u
− 2(n− 1)u2n−1

]

has the solution

u =
[
(1− n)

(
x

2
+ c2

t− t0
x

)]1/(1−n)

. (25)

Case 2. a = 2, c1 = c2 = 0, c3 �= 0. In this case, D, Q, and G satisfy

(s2 − s)u1−nD + s2u2−nQ = c3,

(n+ 1)sD + 2suQ = 0,

nun−1D + unQ+ u−nG = 0,

which gives

D = −n− 1
4

un−1c3,

Q =
n2 − 1
8

un−2c3,

G =
(n− 1)2
8

u3n−2c3.

In this case, g(t) is given by

g = (1 − n)c3(t− t0).

Therefore, the solution of

ut =
c3(n− 1)

4
un−1

[
−uxx +

(n+ 1)
2

u2
x

u
+
(n− 1)
2

u2n−1

]

is

u =
[
(1− n)

(
x

3
+ c3

t− t0
x2

)]1/(1−n)

. (26)
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4. The extended scaling–rotation group

In this section, we propose an extension for both the extended scaling group (S0) and the rotation
group (R0), which is characterized by the invariant set

E0 = {u : ux = f(x)F (u)}, (27)

where f(x) satisfies

fx = af2 + b. (28)

Therefore,

f =

√
ab tan(

√
ab(x + x0))
a

if ab > 0

or

f =
√−ab coth(√−ab(x+ x0))

a
,

f = −
√−ab tanh(√−ab(x+ x0))

a
if ab < 0,

where a, b �= 0 are two constants. We note that when a = 0 or b = 0, the invariant set E0 respectively
reduces to R0 or S0. Therefore, the invariant set E0 can be considered a generalization of S0 and R0. In
the invariant set E0, we have the formulas

ux = f(x)F (u),

uxx = f2(FF ′ + aF ) + bF,

uxxx = f3[F (FF ′ + aF )′ + 2aF (F ′ + a)] + bfF (3F ′ + 2a), (29)

uxxxx = f4{F [F (FF ′ + aF )′ + 2aF (F ′ + a)]′ + 3aF [(FF ′ + aF )′ + 2a(F ′ + a)]}+

+ f2{3b[F (FF ′ + aF )′ + 2aF (F ′ + a)] + bF (3FF ′ + 2aF )′ +

+ abF (3F ′ + 2a)}+ b2F (3F ′ + 2a).

In the invariant set E0, the solution takes the form

∫ u ds

F (s)
= −1

a
log | cos(

√
ab(x+ x0))|+ g(t) if ab > 0 (30)

or ∫ u ds

F (s)
= −1

a
log | sinh(√−ab(x+ x0))|+ g(t) if ab < 0,

∫ u ds

F (s)
= −1

a
log | cosh(√−ab(x+ x0))|+ g(t) if ab < 0.

(31)

We now use the above formulas to construct exact solutions of the following nonlinear evolution equa-
tions.
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Quasilinear heat equations. We consider the quasilinear heat equation. Substituting (29) in (5),
we have

g′(t) = f2(DF ′ +QF + aD) +
G

F
+ bD. (32)

The left-hand side of (33) is independent of x. Therefore, we have

(DF ′ +QF + aD)′F + 2a(DF ′ +QF + aD) = 0,

(
G

F
+ bD

)′
F + 2b(DF ′ +QF + aD) = 0.

Integrating gives

DF ′ +QF + aD = c0 exp
[
−2a

∫ u ds

F (s)

]
,

G

F
+ bD =

bc0
a
exp

[
−2a

∫ u ds

F (s)

]
+ c1,

where c0 and c1 are arbitrary constants. Hence, g(t) satisfies the equation

g′ = c1 +
b

a
c0e

−2ag =⇒ g =
1
2a
log

[
bc0(e2ac1(t+t0) − 1)

ac1

]
.

In particular, we find that the equation

ut = uxx +G(u)

admits solutions (30), (31) when F satisfies

FF ′′ + 2a(F ′ + a) = 0

and G(u) is given by

G = −2bF logF − 2abF
∫ u ds

F (s)
+ cF,

where c is a constant.

Remark. This approach can also be used for equations with x-variable coefficients. For example, the
equation

ut = uxx +X(x)G(u)

also admits solutions (30), (31), where F , G, and X satisfy

F

(
F ′ + α

G

F

)′
+ 2a

(
F ′ + a+ α

G

F

)
= 0,

β

(
G

F

)′
F + 2b

(
F ′ + α

G

F
+ a

)
= 0,

X(x) = αf2 + β,

where α and β are constants.
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5. Conclusions

We have shown that the rotation group admits a “nonlinear” extension characterized by an invariant
set of a contact first-order differential structure, which is parallel to the “nonlinear” extension for the scaling
groups. This extension has been used to construct exact solutions of some nonlinear evolution equations
of the second and fourth orders that do not admit the rotation group. We have proposed a more general
“nonlinear” extension of the scaling group that is also characterized by an invariant set of a contact first-
order differential structure with a nonhomogeneous term. When the nonhomogeneous term is zero, our set
reduces to the invariant set introduced in [8]. A further extension of both the extended scaling group S0

and the extended rotation group R0 was also introduced. These approaches were then used to obtain some
exact solutions of nonlinear evolution equations including KdV-type equations.
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